

M	Home Assignment -
	Name: Graikwad Vaishnavi Balasaheb. Std: BSC-I Division: B Roll No: 1035 Subject: Microbiology College Name: Shri. Shivaji Mabavidyaloy, Barshi. Paper: T
ф.IJ	Define procaryotic and Eucaryotic cell with figures, Differentiate between procaryotic and eucaryotic cell structure. Ewrite all differencess]
	Prokaryotic (e11: Organisms which contain primittive nucleus are called prokaryotic cells. In these cells DNA or genetic material is very primitive. It is freely Suspended in Cytoplasm, Nucleolus are absent. It is not true nucleus so we can call it as nucleid. Nuclear material chromatin body bacterial DNA, Bacterial chromatin body bacterial DNA, Bacterial chromosome, nucloid is circular Double Standed DNA (Histone) Basic protiens are absent. Gtc percentage is 28 to 73. There is no distintion between Cytoplasm, Neudeoplasm, ER GA, chlorebium Vesides are absent. Ribosomes are only 70 ⁵ type Mesosomes, Mongnetosames. Ribosomes are only 70 ⁵ types. vesicles stored food is pressent in the cytoplasm cell wall is very unique, it is made up of peptidoglycon. Cynobacteria are prokaryotic.
•	Eukaryotic Cell :- Cell which Contain well developed nucleus are eukaryotic cells, Nucleus is bounded by nuclear membrane. Nucleus contain more than one linear chromosomes. histories are present Neuclus are present cytoplasm and nucleoplasm are separated. Cytoplasm contain chlorobium vesicles, Vaccules, Endoplasmic Reticulum, Golgi bodies, mitochondria, Ribosome, lysozome etc. Bibosome are of two types 80° g 70°.

(https://docs.google.com/forms/d/e/1FAlpQLSeA_KvnGRNubTYi4rRoRXFdG_D Mc5IBaXBsAzdQM3p_t9DFzA/viewform?usp=sf_link)

डॉ. रविकांत शिंदे चेअरमन, शिवछत्रपती वक्तृत्व स्पर्धा प्राचार्य डॉ. प्रकाश थोरात श्री शिवाजी महाविद्यालय, बार्शी.

Shri Shivaji Shikshan Prasarak Mandal Barshi's SHRI SHIVAJI MAHAVIDYALAYA, BARSHI DEPARTMENT OF CHEMISTRY B.Sc. II Practical Chart

CHART INDEX

Sr. No.	Name of Experiment	Page No
	A) PHYSICAL CHEMISTRY	·
	a) Instrumental	
1	Conductometry : No 1: Verification of Ostwald's Dilution Law	4
2	Conductometry : No 2: Conductometric Titration	5
3	Conductometry : No 3: Verification of Onsagar Equation	6
4	Polarimetry	7
5	Refractometry	9
6	Viscosity	10
	b) Non-instrumental	
7	Chemical Kinetics No. 1: Relative Strength of Two Acids	11
8	Chemical Kinetics No. 2: Effect of Acid Strength	13
9	Chemical Kinetics No. 3: K ₂ S ₂ O ₈ and KI (Unequal Concentration)	15
10	Chemical Kinetics No. 4: KBrO ₃ and KI (Equal Concentration)	16
11	Partition coefficient	18
	B) INORGANIC CHEMISTRY	
	a) Gravimetric Estimations	
12	Gravimetric Estimation of Barium	21
13	Gravimetric Estimation of Iron	23
	b) Titrimetric Analysis	
14	Calibration of Volumetric Apparatus	25
15	Analysis of Commercial Vinegar	27
16	Total Hardness of Water	29
	c) Inorganic Preparations	
17	Preparation of F.A.S. (Mohr's Salt)	32
18	Preparation of Tetraamminecopper(II) sulphate	33
19	Preparation of Chlorpentamminecobalt(III) chloride	34
20	Preparation of hexamminenickel (II) chloride.	35
21	Semi-micro Qualitative Analysis	36
	C) ORGANIC CHEMISTRY	
	a) Organic Estimations	
22	Estimation of Acetone	47
23	Estimation of Ester (Ethyl Benzoate)	48
24	Estimation of Ibuprofen from Ibuprofen Tablet	50
	b) Organic Preparations	
25	Preparation of m-Dinitrobenzene	53
26	Preparation of Phthalimide	54
27	Preparation of p- Bromoacetanilide	55
28	Preparation of Acetanilide	55
29	Identification of organic compounds	56

PRACTICAL EXAMINATION PATTERN

Total 100 marks

- Internal practical examinations (As per the schedule given by the college) = 20 marks
- University practical examinations (Annual as per the schedule given by the University) = 80 marks

Sr. No.	Section
1	Physical Chemistry
2	Inorganic Chemistry
3	Organic Chemistry

Chemistry in Everyday life

There is no aspect of our life that is not affected by developments in chemistry.

Chemistry plays a very vital role in our everyday life. Our daily need of food, clothing, shelter, potable water, medicines etc. are connected with chemical compounds, processes and principles.

Chemistry has important contribution for giving us:

- ✓ Life saving drugs
- ✓ Synthetic fibers,
- ✓ Synthetic detergents
- ✓ Variety of cosmetics
- ✓ Preservatives for our food
- ✓ Fertilizers & pesticides
- ✓ Paper
- ✓ Glass
- ✓ Plastics
- ✓ Beautiful paints etc.

JOURNAL INDEX

Sr. No.	Name of experiment	Date	Page No.	Remark
	A) PHYSICAL CHEMISTRY			
	a) Instrumental			
1	Conductometry No. 1			
	Verification of Ostwald's Dilution Law			
	To determine the degree of dissociation and dissociation			
	constant of acetic acid at various dilutions and to verify			
	Ostwald's dilution law.			
2	Conductometry No. 2			
	Conductometric Titration			
	To determine the normality of the given strong acid by			
	titrating it against strong alkali conductometrically.			
3	Conductometry No. 3			
	To determine acuivalent conductance at infinite dilution of			
	strong electrolyte by using five different dilutions			
	conductometrically (Ex KCl /NaCl / KNO ₂ / HCl) & to			
	verify Onsagar equation.			
4	Polarimetry			
_	To determine the specific rotation of the given sugar			
	solutions polametrically.			
5	Refractometry			
	To determine the specific and molar refractivities of the			
	given liquids A, B and C and hence determine the			
	refractivity of –CH ₂ group.			
6	Viscosity			
	To determine the percentage composition of the given			
	unknown mixture by using viscometer.			
	b) Non-Instrumental			
7	Chemical Kinetics No. 1			
	Relative Strength of Two Acids			
	To determine the relative strength of acids from the			
	nydrolysis of methyl acetate in presence of 0.5 N HCl and			
0	Chamical Kinetics No. 2			
o	Effect of Acid Strength			
	To study the effect of acid strength on hydrolysis of an ester			
	by using 0.5 N HCl and 0.25 N HCl.			
9	Chemical Kinetics No. 3			
	$K_2S_2O_8$ and KI (Unequal concentration)			
	To investigate the reaction between $K_2S_2O_8$ and KI with			
	unequal concentrations of the reactants.			
10	Chemical Kinetics No. 4			
	KBrO ₃ and KI (Equal concentration)			
	To determine the order of the reaction between $HBrO_3$ and			
	HI.			
11	Partition coefficient			
	To determine partition coefficient of benzoic acid between			
	water and benzene			

	B) INORGANIC CHEMISTRY				
	a) Gravimetric Estimations				
12	Gravimetric Estimation of Barium To determine the amount of barium as BaSO ₄ from the given solution of BaCl ₂ .2H ₂ O and free HCl.				
13	Gravimetric Estimation of Iron To determine the amount of Fe as Fe_2O_3 from the given solution of. F.A.S. and free H_2SO_4 .				
	b) Volumetric Analysis				
14	Calibration of Volumetric Apparatus To calibrate volumetric apparatus-burettes, pipettes and volumetric flasks				
15	Analysis of Commercial Vinegar To determine the percentage of acetic acid in commercial vinegar sample.				
16	Total Hardness of Water To prepare standard solution of calcium chloride from calcium carbonate and determine the total hardness of given water sample				
	c) Inorganic Preparations				
17	Preparation of F.A.S. (Mohr's Salt) To prepare ferrous ammonium sulphate.				
18	Preparation of Tetraamminecopper(II) sulphate				
	To prepare tetraamminecopper(II) sulphate.				
19	Preparation of Chloropentaamminecobalt (III) chlorideTo Prepare Chloropentaamminecobalt (III) chloride				
20	Preparation of Hexaamminenickel(II) chloride				
	To Prepare of Hexaamminenickel(II) chloride				
	Qualitative Analysis				
21	Semi – Micro Qualitative Analysis Give the complete qualitative analysis of the mixture given in capsule marked 'A'.				
	Cations Anions				
	2) 2)				
	Inorganic Mixture No: 2 1) 1) 2) 2) 2)				
	Inorganic Mixture No: 3 1) 1) 2) 2) 2)				
	Inorganic Mixture No: 4 1) 1) 2) 2)				
	Inorganic Mixture No: 5 1) 1) 2) 2)				
	Inorganic Mixture No: 6 1) 1) 2) 2) 2)				
	Inorganic Mixture No: 7 1) 1) 2) 2)				
	Inorganic Mixture No: 8 1) 1) 2) 2)				

	C) ORGANIC CHEMISTRY					
	a) Organ	nic Estimations				
22	Estimation o	f Acetone				
	To estimate t	he amount of acetone	e in the given solution			
	by iodometric	e method.				
23	Estimation o	f Ester (Ethyl Benzo	oate)			
	To estimate	the amount of ethyl	benzoate in the given			
	solution.					
24	Estimation o	mation of Ibuproten from Ibuproten Tablet				
	ibuprofen tablet					
	b) Orga	nic Preparations				
23	Preparation	of m-Dinitrobenzene	2			
	To prepare	m-dinitrobenzene fro	om given amount of			
24	nitrobenzene.	- 6 Db 4b - Bart d -				
24	To prepare p	of Phinanmue	n amount of phthalic			
	anhydride	infiamme nom give	amount of philane			
25	Preparation	of p-Bromoacetanili	de			
-	To prepare p-bromoacetanilide from given amount of					
	acetanilide.					
26	Preparation	Preparation of Acetanilide				
	To prepare ac	cetanilide from given a	amount of aniline.			
	Organic Qualitative Analysis					
27	Organic Quantative Analysis					
21	To identify		ipounu			
	marked (A) h	earing your table num	given in a container			
	Organic	Name of the	Structural formula			
	Comp. No.	compound				
	1					
	2					
	2					
	5					
	4					
	5					
	6					
	7					
	8					

1. Conductometry No. 1 Verification of Ostwald's Dilution Law

- **Aim** : To determine the degree of dissociation and dissociation constant of acetic acid at various dilutions and to verify Ostwald's dilution law.
- **Given :** N/10 or N/50 KCl solution, N/10 Acetic acid, conductivity water, 100 ml volumetric flask etc.

Circuit diagram:

Where , S = A.C. Source $R_1,R_2,R_3 = Known$ Resistances Rx = Unknown Resistance D = Detector

Wheatstone's Bridge

Part-A

Procedure: Determination of cell constant of the given conductivity cell.

- 1. Wash the conductivity cell and beaker with conductivity water.
- 2. Rinse both cell and beaker with N/10 or N/50 KCl
- 3. Take sufficient quantity of given N/10 or N/50 KCl solution in the beaker, so as to dip the electrodes of cell properly.
- 4. Connect terminals of the cell to the terminals of the conductometer.
- 5. Measure the conductance and determine cell constant (X)
- 6. Ask for specific conductance (k) of N/10 or N/50 KCl.

Observation table:

Solution used	Observed	Specific	Cell constant
	conductance (C)	conductance (k)	X = k/C
$ \underline{N} \text{ or } \underline{N} \text{ KCl} \\ 10 50 $	x 10 ⁻³		

Part-B

Procedure: Determination of conductance of acetic acid solution of different concentrations

- 1. Prepare 100 ml of acetic acid solutions of each concentration N/20, N/40 and N/80 by diluting 50, 25 ml and 12.5 ml of the given N/10 acetic acid to 100 ml with conductivity water in separate volumetric flask (100 ml each) and shake well.
- 2. Take sufficient quantity of solution in the beaker so as to dip the electrodes of the cell properly.
- 3. Measure the conductance and enter the results in the tabular from.

Sr.	Concentra	Observed	Specific	Equivalent	Degree of	Dissociation
No.	-tion (N)	Conductance	Conductance	Conductance	Dissociation	Constant
		(C)	$\mathbf{k} = \mathbf{X} \cdot \mathbf{C}$	1000 k	$\lambda_{\rm v}$	$K = \alpha^2 \cdot N$
				$\lambda_v - N$	$\alpha = \overline{\lambda_{\infty}}$	
1	N/10	x 10 ⁻³				
2	N/20	x 10 ⁻³				
3	N/40	x 10 ⁻³				
4	N/80	x 10 ⁻³				

Given: λ_{∞} = 390.8 Siemens

Calculations: Specific conductance (k) = cell constant x observed conductance.

Show all details of calculations for each concentration.

Results:

1.	Dissociation constant of acetic acid (Mean)	К=
2.	Conclusion: - Here the values of dissociation co	onstant (K), are
	fairly constant. Hence Ostwald's dilution law is	verified.

2. Conductometry No. 2 Conductometric Titration

- **Aim** : To determine the normality of the given strong acid by titrating it against strong alkali, conductometrically.
- **Given** : 0.1 N (approximately) acid solution, 0.2 N strong alkali (NaOH), conductivity water, microburette, 10 ml pipette etc .

Circuit diagram:

Where,

S = A.C. Source $R_1,R_2,R_3 = Known$ Resistances Rx = Unknown Resistance D = Detector

Procedure:

- 1. Wash the beaker and conductivity cell with conductivity water.
- 2. Take 10 ml of the given 0.1 N acid solution by pipette in 100 ml beaker.
- 3. Add 50 ml conductivity water by the measuring cylinder and stirr well.
- 4. Dip the cell in the solution and connect the terminals of the cell to the conductometer.
- 5. Measure the conductance directly.
- 6. Then add exactly 0.5 ml of 0.2 N strong alkali solutions from the burette to the solution in the beaker.
- 7. Stir well and measure the conductance of the solution.
- 8. Similarly take the readings after every addition of 0.5 ml alkali solution up to 10 ml of alkali.

Observation table:

Sr. No.	Volume of alkali added	Conductance (C) = $1/R$ ohm ⁻¹	
1100	V ml	$(\mathbf{O}) = \mathbf{I} \mathbf{K}$ on \mathbf{M}	
1	0	X 10 ⁻³	≥ \ /
2	0.5	X 10 ⁻³	
3	1.0	X 10 ⁻³	
4	1.5	X 10 ⁻³	ā V
		X 10 ⁻³	Equivalence
•	▼	X 10 ⁻³	point
21	10.0	X 10 ⁻³	Volume of base

Plot the graph of conductance (C) [on y- axis] against ml of strong alkali added (on x- axis). From graph find out the equivalence point.

Calculations:

Calculate the normality of the given strong acid using relation

$$N_1V_1 = N_2V_2$$

Acid Vs Alkali
$$N_1 x \ 10 = 0.2 x \text{ equivalence point}$$
$$N_1 = \underbrace{0.2 \ x \ \text{equivalence point}}_{10}$$
$$= ----- N$$

Result:

1.	Equivalence point from the graph	= ml
2.	Normality of the given strong acid	= N

3. Conductometry No. 3 Verification of Onsager equation

- **Aim** : To determine equivalent conductance at infinite dilution of strong electrolyte (HCl) by using five different dilutions conductometrically and to verify Onsager equation
- **Given :** 0.1 N KCl solution, 0.1 N HCl, 0.1 N KNO₃, 0.1 N NaCl, conductivity water, 100 ml measuring flask etc.

Circuit diagram:

Where,

S= A.C. Source R_1,R_2,R_3 = Known Resistances Rx = Unknown Resistance D = Detector

Part-A

Procedure: Determination of cell constant of given conductivity cell.

1. Wash the conductance cell & beaker with conductivity water and rinse with N/10 KCl.

- 2. Take sufficient quantity of given N/10 or N/50 KCl solution in the beaker, so as to dip the electrodes of conductivity cell properly.
- 3. Connect terminals of the cell to terminals of the conductometer.
- 4. Measure the conductance & determine cell constant (X).
- 5. Ask for the specific conductance (k) of N/10 or N/50 KCl.

Observation table:

Solution used	Observed	Specific	Cell Constant
	Conductance (C)	Conductance (k)	(x)= k/C
$\frac{\underline{N} \text{ or } \underline{N}}{10} \frac{\underline{N}}{50} \text{KCl}$	x 10 ⁻³		

Part-B

Procedure: Determination of equivalent conductance (λ_v) .

- 1. Prepare 100 ml of HCl solution of each concentration of 0.075, 0.05, 0.025, 0.01 and 0.005 N solution by diluting 75 ml, 50 ml, 25 ml, 10 ml & 5 ml of the given 0.1 N HCl solution to 100 ml with conductivity water in separate volumetric flasks (100 ml each) & shake well.
- 2. Measure the conductance of each solution & enter the results in the tabular from.

Observation table:

Conc. of HCl solution (N)	Observed Conductance (C) (ohm ⁻¹)	Specific Conductance k= X x C (ohm ⁻¹ cm ⁻¹)	Equivalent Conductance $\lambda_v = 1000 \text{ x k/N}$
0.100			
0.075			
0.050			
0.025			
0.010			
0.005			

Calculations:

Calculate specific conductance (k), equivalent conductance (λ_v), by	\sim Intercept= $\lambda \infty$
using formulae and show all details of calculations.	
Determination of equivalent conductance at infinite dilution (λ_{∞})	
$\lambda_{\rm v} = \lambda_{\infty}$ - (AB) \sqrt{C} (For HCl $\sqrt{C} = \sqrt{N}$), Where A & B are	av slope
the constants for particular solvent at particular temperature. Using	
this equation, plot the graph of λ_v (Y axis) versus \sqrt{C} (X axis) Slope	-
= (A X B), Intercept on Y axis = $\lambda \infty$ i.e. Equivalent conductance at	√C
infinite dilution	

Result:

1. Equivalent conductance at infinite dilution (λ_{∞}) = ohm⁻¹ cm⁻² eq⁻¹

4. Polarimetry

- **Aim** : To determine the specific rotation and concentration of the given cane sugar solution polametrically.
- **Given** : 10 % sugar solution, distilled water, 50 ml measuring flask

Apparatus: 50 ml measuring flask, polarimeter, polarmetric tube, lamp etc.

Diagram :

Procedure:

- 1. Rotate the polaroid wheel so that the degree meter reads zero.
- 2. Fill the polarimeter tube with distilled water, remove bubble if any and place the tube in the chamber.
- 3. Slowly rotate the wheel so that intensity of light is minimum in intensity meter. Rotate the wheel back and forth to arrive at the exact minimum intensity. Use lens for accuracy.
- 4. Note down the reading on degree meter as (B).
- 5. From the given 10% sugar solution, prepare five different concentrations as per the instructions.
- 6. Replace water in the tube by sugar solutions under study, remove bubble if any and place the tube in the chamber.
- 7. Now rotate the wheel in the direction of decreasing intensity till intensity is minimum, rotate the wheel back and forth for accuracy.
- 8. At minimum intensity note down reading in the degree meter as (A).
- 9. (A-B) is the angle of rotation (θ).
- 10. Plot the graph of angle of rotation (θ) against concentration %.
- 11. From the graph determine the % of the unknown sugar solution.
- 12. Calculate the values of angle of specific rotation (α) by using the values of (θ) and calculate the mean value of (α) .

Observation table:

Sr. No.	Conc. of sugar solution (C)	Reading for solution (A)	Reading for H ₂ O (B) or zero reading	Angle of Rotation θ= A – B	Specific angle of rotation (α)
1					
2					
3					
4					
5					
6	Unknown				

 θ = Reading of solution (A) – zero reading (B)

Preparation of sugar solutions of different concentrations: (Use 50 ml volumetric flask)

. = 10%

- 1. Given sugar solution
- 2. Dilute 40 ml of 10% solution to 50 ml = 8 %
- 3. Dilute 30 ml of 10% solution to 50 ml = 6 %
- 4. Dilute 20 ml of 10% solution to 50 ml = 4 %
- 5. Dilute 10 ml of 10% solution to 50 ml = 2 %
- 1. Dilute 45 ml of 10% solution to 50 ml = 9 %
- 2. Dilute 35 ml of 10% solution to 50 ml = 7 %
- 3. Dilute 25 ml of 10% solution to 50 ml = 5 %
- 4. Dilute 15 ml of 10% solution to 50 ml = 3 %
- 5. Dilute 5 ml of 10% solution to 50 ml = 1 %

.Calculations: Show all details of calculations.

$$\alpha = \frac{100 \text{ x } \theta}{\text{L x C}} \qquad \qquad \theta$$
where α = Angle of specific rotation
 θ = Angle of rotation
 L = Length of the polarimetric
tube in decimeter
 C = Conc. of sugar solution in %

Results:

1.	Specific rotation (Mean)	α =
2.	Concentration of unknown sugar solution from the graph	= %

5. Refractometry

Aim : To determine the specific and molecular refractivities of the given liquids A, B, and C and hence determine the refractivity of -CH₂ group.

Given : Liquids (A, B, C), acetone, cotton, droppers, Abbe's refractometer etc

Part- A (Determination of densities of liquid)

Density of liquid = $\frac{\text{weight of liquid}}{\text{weight of water}} \times \text{density of water}$

Liquid	Wt of empty Sp.	Wt. of specific gravity	Wt. of liquid	Density of
	gravity bottle = (B)	bottle + liquid = (A)	$= \mathbf{A} - \mathbf{B}$	liquid (d)
А				
В				
C				
Dist. water				1.00

Part –B (Determination of refractive index of liquids)

Procedure:

- 1. Set the instrument in front of a well light window.
- 2. Open the prism box, clean and dry prism by acetone by using soft cotton.
- 3. By dropper put some of the liquid sample A on the prism and lock it.
- 4. Bring the mirror to the proper position.
- 5. See in the telescope and move the position of prism with the help of adjusting screw.
- 6. At the proper position colours of two halves will be seen.
- 7. With the help of the circular device (compensator) remove the colour fringes and bring the fine position of the two halves.
- 8. Now with the help of the adjusting screw, coincide the line of separation of the two colours with the crosswire.
- 9. Read and note the refractive index (n) directly from the scale.
- 10. Repeat the above procedure for remaining liquids B and C.

Observation table:

Liquid	Refractive	Density	Molecular	Specific	Molecular	Refractivity
	index (n)	(d)	weight (M)	refractivity	refractivity	of -CH ₂ group
				(R s)	(Rm)	$(\Delta \mathbf{Rm})$
А			78			$\Delta Rm_1 =$
В			92			$\Delta Rm_2 =$
С			106			$\Delta Rm_3 =$

Calculations : Calculate the specific and molar refractivities of liquids by using the formulae

- 1. Specific recfractivity Rs = $\frac{n^2 1}{n^2 + 2} \times \frac{1}{d}$
- 2. Molecular refractivity $Rm = Rs \times M$
- 3. Determination of refractivity of CH₂ group
 - $\Delta Rm_1 = Rm(B) Rm(A)$
 - $\Delta Rm_2 = Rm(C) Rm(B)$

$$\Delta Rm_3 = 1/2 [Rm (C) - Rm (A)]$$

Results:

1. Refractivity of -CH₂ group

6. Viscosity

= ------

Aim : To determine the percentage composition of the given unknown liquid mixture by using Ostwald's viscometer.

Aparatus : Ostwald's viscometer, dryer, stopwatch.

Chemicicals: Drying liquid (acetone), pure liquid A and B, their mixtures (C, D, E and F)

Procedure :

- 1. Wash the viscometer with acetone and dry it by Passing current of air. Attach a piece of rubber tube to the narrow arm and clamp it in a perfectly vertical position.
- 2. Introduce required volume of liquid A (20 or 25 ml) in to the viscometer and suck the liquid A by means of rubber tube till it rises little above the upper mark.
- 3. Allow the liquid to flow through the capillary tube in to the lower bulb and measure the time required for the flow of liquid from upper mark to lower mark. Note down the time in seconds.

- 4. Repeat the measurement of time of flow three times and take the mean readings as the time of flow.
- 5. Remove liquid A from viscometer, rinse it with acetone and dry it.
- 6. Rinse viscometer with liquid B and introduce the same volume of liquid B and determine the time of flow as explained above .Repeat this procedure for other liquid mixtures C, D, E, and F. Ask the densities of A, B, C, D, E and F.

Observation table:

Liquids	% of A	% of B	Time	Time of flow in seconds (t)			Density (d)	d x t
			Ι	II	III	Mean(t)		
А	100	0						
В	0	100						
С								
D								
Е								
F	Unknown	Unknown						

Diagram and Graph:

Plot the graph of (d x t) (Y axis) against percentage of A (X axis). Obtain the smooth curve from the graph and determine the percentage composition of F.

Result : Percentage composition of F from graph

1.	Percentage of A	=%
2.	Percentage of B	=%

7. Chemical Kinetics No. 1 Relative Strength of Two Acids

Aim : To determine the relative strength of two acids from the hydrolysis of methyl acetate in presence of 0.5 N HCl and 0.5 N H₂SO₄.

Procedure : Perform two set of experiments as follows

Set – I: Bottle No. 1: 5 ml methyl acetate.

Bottle No. 2: 100 ml 0.5 N HCl

- 1. Keep these two bottles in water bath to attain the same temperature.
- 2. Mean while fill the burette with 0.1 N NaOH. Take 3 or 4 ice pieces and 2 to 3 drops of phenolphthalein indicator in a conical flask.
- 3. Add solution from bottle No. 2 to bottle No. 1 completely and start the stop watch. Shake well and immediately pipette out 5 ml reaction mixture in the conical flask containing ice and indicator. Titrate this reaction mixture against 0.1 N NaOH solution, till colour changes from colourless to faint pink. Note down the burette readings as T_0 (zero minute reading).
- 4. Again fill the burette with 0.1 NaOH. Take ice and indicator in conical flask.
- 5. Similarly take readings for time intervals of 10, 20, 30 and 40 minutes from the mixing time (Ask for T_{∞}).

Set – II: Bottle No. 1: 5 ml methyl acetate.

Bottle No. 2: 100 ml 0.5 N H₂SO₄

Follow all the steps in the procedure of the Set – I

Reaction:

Set- I (0.5 N HCl)

Observations:

1. In burette	:	0.1 N NaOH
2. In conical flask	:	Ice + indicator + 5 ml reaction mixture
3. Indicator	:	Phenolphthalein
4. End point	:	Colourless to pink

Observation table

	Given $T_{\infty} =$	ml	a = '	$\Gamma_{\infty} - T_0 = - $	ml	
Fime in	Titration	X=Tt- To	a-x	<u>a</u>	loga	$k_1 \min^{-1}$
Min. t	reading T _t ml			a - x	$\log^{10}a - x$	
0	$T_0 =$					
10	$T_t =$					
20	T _t =					
30	$T_t =$					
40	$T_t =$					

Mean $k_1 = \dots \min {}^{-1}$

Set- II (0.5 N H₂SO₄)

Observations:

- 1. In burette
- 2. In conical flask :

:

:

- 3. Indicator
- 4. End point

0.1 N NaOH Ice + indicator + 5 ml reaction mixture Phenolphthalein Colourless to pink

Observation table:

	$\text{Orven } \Gamma_{\infty} = -$	1111		$a - 1_{\infty} -$	10 =	-1111
Time in	Titration	X=T _t - T _o	a-x	a	loa a	$k_2 \min^{-1}$
Min. t	reading Tt ml			a - x	$\log a - x$	
0	$T_0 =$					
10	$T_t =$					
20	$T_t =$					
30	$T_t =$					
40	T _t =					
Mean $k_2 = \dots \dots \min^{-1}$						

 $\mathbf{a} - \mathbf{T}$

 $T_{\alpha} -$

ml

ml

Calculation: Formula to be used

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

Relative strength of two acids = $\frac{\text{Mean of } -k_2}{\text{Mean of } -k_1}$

Give all details of calculations.

Given T -

Results :

1.	Mean of k ₁	= min ⁻¹
2.	Mean of k ₂	= min ⁻¹
3.	Relative strength of two acids	=

8. Chemical Kinetics No. 2

Effect of Acid Strength

Aim : To study the effect of acid strength on hydrolysis of methyl acetate.

Given : 0.5 N HCl, 0.25 N HCl, 0.1 N NOH, Methyl acetate, Phenolphthalein, ice etc

Procedure : Perform two set of experiments as follows.

Set – **I:** Bottle No. 1: 5 ml methyl acetate.

Bottle No. 2: 100 ml 0.5 N HCl

- 1. Keep these two bottles in water bath to attain the same temperature.
- 2. Mean while fill the burette with 0.1 N NaOH. Take 3 or 4 ice pieces and 2 to 3 drops of phenolphthalein indicator in a conical flask.
- 3. Add solution from bottle No. 2 to 1 completely & start the stop watch. Shake well & immediately pipette out 5 ml reaction mixture in conical flask containing ice & indicator. Titrate this reaction mixture against 0.1 N NaOH solution, till colour changes from colourless to faint pink. Note the burette readings as T_o (Zero minute reading).
- 4. Again fill the burette with 0.1 NaOH. Take ice and indicator in conical flask.
- 5. Similarly take readings for time intervals of 10, 20, 30 and 40 minutes from the mixing time (Ask for T_{∞}).

Set – II: Bottle No. 1: 5 ml methyl acetate. Bottle No. 2: 100 ml 0.25 N HCl Follow all the steps in the procedure of the Set – I

Reaction:

Observations:

1. In burette:0.1 N NaOH2. In conical flask:Ice + indicator + 5 ml reaction mixture3. Indicator:Phenolphthalein4. End point:Colourless to pink

Observation table

Given $T_{\infty} =$	ml
----------------------	----

 $a = T_{\infty} - T_0 = ----ml$

Time in	Titration	X=T _t -T _o	a-x	a	log a	Velocity constant
Min. t	reading T _t ml			a-x	a - x	$k_1 \min^{-1}$
0	$T_0 =$					
10	T _t =					
20	T _t =					
30	T _t =					
40	$T_t =$					

Mean $k_1 = \dots \min^{-1}$

Set- II (0.25 N HCl)

0.1 N NaOH

Observations:

- 1. In burette
- 2. In conical flask :
- 3. Indicator
- 4. End point

Ice + indicator + 5 ml reaction mixture Phenolphthalein Colourless to pink

Observation table:

Given $T_{\infty} = ----- ml$

:

:

:

 $a = T_{\infty} - T_0 = ----ml$

Time in	Titration	X=T _t -T _o	a-x	<u>a</u>	log a	Velocity constant
Min. t	reading T _t ml			a-x	a - x	$k_2 \min^{-1}$
0	$T_0 =$					
10	T _t =					
20	T _t =					
30	T _t =					
40	T _t =					
Mean $k_2 = \dots \dots \min^{-1}$						

Calculation: Formula to be used

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

Give all details of calculations

Results :-

1.	Velocity constant for Set-I	Mean of $k_1 = min^{-1}$			
2.	Velocity constant for Set-II	Mean of $k_2 = min^{-1}$			
3.	Conclusion: The value of k_2 is less than that of k_1 which shows that velocity constant decreases with decrease in concentration of acid i.e catalyst.				

9. Chemical Kinetics No. 3 K₂S₂O₈ and KI (Unequal Concentration)

Aim : To investigate the reaction between $K_2S_2O_8$ and KI with unequal concentrations of the reactants.

Given : 0.1 N K₂S₂O₈, 0.1 N KI, 0.002 N Na₂S₂O₃, distilled water, ice, starch etc

Procedure : Perform the experiment as follows

Bottle No. 1: 10 ml 0.1 N $K_2S_2O_8$ + 30 ml distilled water Bottle No. 2: 20 ml 0.1 N KI + 20 ml distilled water

- 1. Keep these bottles in water bath to attain the same temperature and fill the burette with $0.002 \text{ N} \text{ Na}_2\text{S}_2\text{O}_3$ solution.
- 2. Add the solution from bottle No. 2 to 1 and note the time of mixing. Shake well (do not take zero time reading).
- 3. Take 3 to 4 ice pieces and 8 to 10 drops of starch indicator in a conical flask.
- 4. Pipette out 10 ml reaction mixture in conical flask containing ice and indicator. Titrate it against $Na_2S_2O_3$ solution at the time interval 10, 15, 20, 25, 30, and 40 minutes from the mixing time till colour changes from blue to colourless.

Observation:

- 1. In burette
- 2. In conical flask
- 3. Indicator

- 0.002 N Na₂S₂O₃ Ice + indicator + 10 ml reaction mixture
- : Starch solution : Blue to colourless
- 4. End point

Observation table:

Time in Min. t	Titration reading 'x' ml	a – x	b – x	$\frac{a-x}{b-x}$	$\log \frac{a-x}{b-x}$	k dm ³ /min/mol
10						
15						
20						
25						
30						
40						

Reactions:

 $2 \text{ KI} + \text{K}_2 \text{S}_2 \text{O}_8 \longrightarrow 2 \text{ K}_2 \text{SO}_4 + \text{I}_2 \downarrow$

:

:

•

 $Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$

Calculation :

Initial concentration 'a' and 'b'

For KI	For K ₂ S ₂ O ₈
KI (initial) x KI (in mixture)	$K_2S_2O_8$ (initial) against $K_2S_2O_8$ (in mixture)
$N_1 V_1 = N_2 V_2$	$\mathbf{N}_1\mathbf{V}_1=\mathbf{N}_2\mathbf{V}_2$
$0.1 \ge 20 = N_2 \ge 80$	$0.1 \ge 10 = N_2 \ge 80$
$N_2 = 0.025$	$N_2 = 0.0125$
KI (in mixture) against Na ₂ S ₂ O ₃	$K_2S_2O_8$ (in mixture) against $Na_2S_2O_3$
$N_2V_2 = N_3V_3$	$N_2V_2 = N_3V_3$
$0.025 \text{ x } 10 = 0.002 \text{ x } \text{V}_3$	$0.0125 \ge 10 = 0.002 \ge V_3$
$V_3 = 125ml = (a)$	$V_3 = 62.5ml = (b)$

Calculate the values of k using formula

 $k = \frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)}$

Give all details of calculation

Plot the graph of log (a - x) / (b-x) against time 't' Calculate the value of k from graph

$$k = \frac{2.303 \text{ x slope}}{a - b}$$

Result:

1.	Velocity constant (Mean k) by calculation	= dm ³ /min/mol
2.	Velocity constant (k) by graph	= dm ³ /min/mol
3.	Conclusion: Since values of k are fairly constant second order reaction	nt, it is a bimolecular or

10. Chemical Kinetics No. 4 KBrO₃ and KI (Equal Concentrations)

- **Aim** : To determine the order of the reaction between HBrO₃ and HI.
- **Given** : 0.1 N KBrO₃, 0.1 N KI, 0.01 N Na₂S₂O₃, starch indicator, 0.1 N HCl, distilled water, ice .
- **Procedure** : Perform the experiment as follows.
 - Bottle No. 1: 25 ml 0.1 KBrO₃

Bottle No. 2: 25 ml 0.1 N KI + 100 ml 0.1 N HCl + 100 ml distilled water.

- 1. Keep the two bottles in a water bath to attain the same temperature and fill the burette with $0.01 \text{ N} \text{ Na}_2\text{S}_2\text{O}_3$.
- 2. Add solution from bottle No. 2 to bottle No. 1 completely and note the time of mixing the mixture is stirred and placed in water bath throughout the experiment. It is shaken occasionally (do not take zero reading).
- At intervals of 5, 10, 15, 20, 25 and 30 minutes from the mixing time, pipette out 25 ml of the reaction mixture in the conical flask containing 2 or 3 ice pieces and 8-10 drops of starch indicator. Titrate this reaction mixture against 0.01 N Na₂S₂O₃. The end point is blue to colourless.
- 4. Calculate the values of 'a' and 'b'.
- 5. Calculate the values of k using the given formula. Plot a graph of 1/(a-x) against time (t). Calculate two values of k from the graph (k= slope).

Observation:

- 1. In burette
- 2. In conical flask
- 3. Indicator
- 4. End point

 $0.01 \text{ N} \text{ Na}_2\text{S}_2\text{O}_3$ Ice + indicator + 25 ml reaction mixture Starch (8 to 10 drops) Blue to colourless

d point

:

:

:

:

Observation table:

Time in minutes (t)	Titration reading 'x' ml	a - x	$\frac{1}{a-x}$	$\mathbf{k} = \frac{\mathbf{x}}{\mathbf{t. a} (\mathbf{a} - \mathbf{x})}$ $\frac{\mathrm{dm}^{3}/\mathrm{min}/\mathrm{mol}}{\mathrm{dm}^{3}/\mathrm{min}/\mathrm{mol}}$
5				
10				
15				
20				
25				
30				

Mean k=..... lit $mol^{-1} min^{-1}$

Calculations:

Initial concentrations 'a' and 'b'

Normality of KBrO₃ in mixture KBrO₃ (original) = KBrO₃ (in mixture) $N_1V_1 = N_2V_2$ $0.1x \ 25 = N_2 \ x \ 250$ $N_2 = (0.1x25) / 250$ $N_2 = 0.01N$ Initial concentrations of KBrO₃ (a) in terms of 0.01 N Na₂S₂O₃ $N_2V_2 = N_3V_3$ $V_3 = (0.01 \times 25) / 0.01$ $V_3=25 \text{ ml}$ $\therefore a= V_3=25 \text{ ml}$

As the normality and volume of KI used is same as that of KBrO₃ the concentration of KI in terms of 0.01 N Na₂S₂O₃ is 25 \therefore a=b=25 ml.

Calculate the values of k using formula Give all details of calculations

$$\mathbf{k} = \frac{\mathbf{x}}{\mathbf{t.} \mathbf{a} \ (\mathbf{a} - \mathbf{x})}$$

Plot 1/ (a-x) versus time and calculate k from graph,

Results:

1.	Velocity constant (Mean k) by calculation	= dm ³ /min/mol
2.	Velocity constant (k) by graph	= dm ³ /min/mol
3.	Conclusion: The graph is straight line inters Therefore reaction is bimolecular i.e. Order	secting on Y axis. of reaction is 2.

11. Partition Coefficient

Aim : To determine partition coefficient of benzoic acid between water and benzene

Given : Glass stoppered bottles of small diameter, beakers, pipette, benzoic acid, 0.1 N NaOH, 0.01 N NaOH, phenolphthalein, benzene etc.

Procedure :

- 1. Take three clean stoppered bottles and number them as a 1, 2 and 3. Weigh 1, 2 and 3 gram of benzoic acid and transfer these amounts in bottles 1, 2 and 3 respectively. To each bottle add 50 ml benzene and 50 ml water.
- 2. Stopper the bottles tightly and shake them vigorously for 30 minutes from time to time and allow to stand at room temperature. The content will separate in two layers, the lower layer will be the aqueous and upper layer will be benzene.

Part-I

- 3. Pipette out 10 ml of lower aqueous layer from bottle no. 1 in a conical flask containing 20 ml distilled water.
- 4. Titrate it with 0.01 N NaOH using phenolphthalein as indicator. End point is colourless to faint pink. During the titration, the contents should be shaken vigorously. Take two more readings for the same bottle and find out constant burette reading (C.B.R.).
- 5. Similarly, repeat the procedure in points 3 and 4 for remaining two bottles.

Part-II

- 6. Pipette out 10 ml of upper benzene layer from bottle no. 1 in a conical flask containing 20 ml distilled water.
- 7. Titrate it with 0.1 N NaOH using phenolphthalein as indicator. End point is colourless to faint pink. During the titration, the contents should be shaken vigorously. Take two more readings for the same bottle and find out constant burette reading (C.B.R.).
- 8. Similarly, repeat the procedure in points 6 and 7 for remaining two bottles.

Part-I (Lower Aqueous Layer)

Observation:

- 1. Solution in burette : 0.01 NaOH solution
- 2. Solution in conical flask: 10 ml aqueous layer
- 3. Indicator : Phenolphthalein
- 4. End point : Colourless to faint pink

Observation Table:

Bottle	Buret			
No.	Ι	II	III	C. B. R. ml
1				
2				
3				

Calculations:

Determine the concentration of aqueous layer $(C_{\mbox{\scriptsize aq.}})$ for each bottle by using following formula

Aqueous layer	≡	NaOH
$\mathbf{N}_1 \ \mathbf{V}_1$	=	$N_2 V_2$
$N_1 X 10$	=	0.01 X C.B.R.
N_1	=	<u>0.01 X C.B.R.</u>
		10

Part-II (Upper Benzene Layer)

Observation:

- 1. Solution in burette : 0.1 NaOH solution
- 2. Solution in conical flask: 10 ml benzene layer
- 3. Indicator : Phenolphthalein
- 4. End point : Colourless to faint pink

Observation Table:

Bottle	Buret			
No.	Ι	II	III	C. B. R. ml
1				
2				
3				

Calculations:

Determine the concentration of benzene layer ($C_{\text{ben.}}$) for each bottle by using following formula

Benzene layer	≡	NaOH
$N_1 V_1$	=	$N_2 V_2$
$N_1 X 10$	=	0.1 X C.B.R.
\mathbf{N}_1	=	<u>0.1 X C.B.R.</u>
		10

Calculations of partition coefficient:

Bottle	Concentration of	Concentration of	Partition coefficient		
No.	aqueous layer	benzene layer	$\sqrt{C_{hen}}$		
	(C _{aq.})	(C _{ben.})	$K = \frac{V - B C m}{C_{aq}}$		
1					
2					
3					
	Mean K				

B. INORGANIC CHEMISTRY

a) Gravimetric Estimations

12. Gravimetric Estimation of Barium

- Aim : To determine the amount of Barium as BaSO₄ from given solution of BaCl₂.2H₂O and free HCl
- **Chemicals** : Given solⁿ of barium chloride in 250 ml volumetric flask, conc.HCl, 2 N H₂SO₄
- **Apparatus** : Beakers, 25 ml pipette, 250 ml volumetric flask, glass rod, tripod stand, washing bottle, silica crucible, drying cone, asbestos sheet, desiccators, digital balance etc

Procedure

:

- **1. Dilution:** Dilute the given barium chloride solution to 250 ml with distilled water and shake well.
- **2. Precipitation:** Pipette out 50 ml diluted solution in 500 ml beaker + 100 ml distilled water +2 ml conc. HCl and boil it on wire gauze. Keep beaker on asbestos sheet & add hot 2 N H₂SO₄ (about ³/₄ t.t.) with constant stirring. White precipitate of BaSO₄ is formed.
- **3. Digestion:** Digest the precipitate of $BaSO_4$ on sand both for about 30 min. (Now test whether precipitation is completed or not by adding drop of 2 N H₂SO₄ with the help of glass rod in contact with inner side of beaker).
- **4. Filtration and Washing:** Now filter the supernatant liquid through Whatman filterpaper No.42. Wash the precipitate for 3-4 times **in beaker** by hot distilled water and decant the supernant liquid through the same Whatman filter paper. Now transfer the white ppt. of BaSO₄ to Whatman filter paper by using washing bottle. Then Wash precipitate with distilled water until the fresh filtrate free from SO₄⁻⁻ & Cl⁻ [Test with Ba (NO₃)₂ and AgNO₃].
- **5. Drying and Ignition:** Dry the precipitate on drying cone and ignite in a weighed crucible. Heat the crucible for 45 minute. Cool and weigh the crucible. Find out constant weight of residue.

```
Reaction:BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 \downarrow + 2HClBaSO_4 \_ Ignition \_ BaSO_4 \downarrowBaSO_4 \_ Ignition \_ BaSO_4 \downarrowResidue
```

Observation:

1. Weight of empty crucible	$\mathbf{W}_1 = \dots \mathbf{g}$
2. Weight of empty crucible + residue	
On first heating (45 min) $a = \dots g$	
On second heating (10 min) b =	
On third heating (10 min) $c =g$	
:. Constant weight of crucible + residue	$\mathbf{W}_2 = \dots \mathbf{g}$
3. Weight of residue $= (W_2 - W_1)$	W =g

Calculation :

	Constant	weight of	residue, W	/ =	g
BaSO ₄	:	Ba	:	BaCl ₂ .2H ₂ O	
233.4	:	137.4	:	244.28	
1	:	0.5883	:	1.04469	

a) Quantity of Ba:

Hence, $1 \text{ g BaSO}_4 = 0.5883 \text{ g Ba}$ $\therefore \text{ W g BaSO}_4 = \text{ W x } 0.5883 \text{ g Ba}$ i.e. A = g Ba

b) Quantity of BaCl₂. 2H₂O:

Now	0.5883 g Ba	=	1.0469	g BaCl ₂ .2H ₂ O
	∴ BgBa	=	<u>B x 1.0469</u>	g BaCl ₂ .2H ₂ O
			0.5883	
	i.e C	=		g BaCl ₂ .2H ₂ O

Results:

1.	50 ml of the diluted solution gave residue (weight of BaSO4residue)	(W) =g	=x 10 ⁻³ Kg
2.	Quantity of metal (Ba) in given solution	(B) =g	=x 10 ⁻³ Kg
3.	Quantity of metal salt (BaCl ₂ .2H ₂ O) in the given solution	(C) =g	=x 10 ⁻³ Kg

Techniques in Gravimetric Analysis

13. Gravimetric Estimation of Iron

- **Aim** : To the determine the amount of Fe as Fe₂O₃ from a given solution of ferrous ammonium sulphate (F.A.S.) and free sulphuric acid .
- Chemical : Given solⁿ of F.A.S. in 250 ml volumetric flask, 1:1 ammonia solⁿ, conc. HNO₃ dil. H₂SO₄, solid NH₄Cl, 1% Ammonium Nitrate

Apparatus : Beakers, 25 ml pipette, 250 ml volumetric flask, tripod stand, washing bottle, silica crucible, drying cone, asbestos sheet, desiccators, digital balance etc.

Procedure

- 1. Dilution: Dilute the given solution to 250 ml with distilled water and shake well.
- 2. Precipitation: Pipette out 50 ml diluted solution in 500 ml beaker + 100 ml distilled water and boil it on wire gauze + 10 ml dil. H₂SO₄ + 5 ml conc. HNO₃ + about 2 g solid ammonium chloride. Observe colour (it should be intense yellow). Stop heating and add 1:1 ammonia solution with constant stirring until there is a distinct smell of ammonia to the solution. A dark brown gelatinous precipitate of Fe (OH)₃ is formed. Boil the solution on wire gauze.
- **3. Filtration and Washing:** Immediately filter the ppt. through Whatman Paper No. 41and wash the precipitate with distilled water and then hot 1% ammonium nitrate solution until the fresh filtrate is free from SO₄⁻⁻ and Cl⁻ [test with Ba(NO₃)₂ and AgNO₃ solution].
- **4. Drying and Ignition:** Dry the precipitate on drying cone and ignite in the weighed crucible. Heat the crucible for 45 minutes on blue flame. Now cool the crucible and weigh. Find out constant weight of residue (Fe₂O₃).

Reaction:	$FeSO_4(NH_4)_2SO_4^{\cdot}6H_2O \longrightarrow Dissolution$	$FeSO_4 + (NH_4)_2 SO_4 + 6H_2O$
	$6FesO_4 + 3H_2SO_4 + 2HNO_3 \xrightarrow{\textbf{Oxidation}}$	$3Fe_2(SO_4)_3 + 4H_2O + 2NO$
	Fe ₂ (SO ₄) ₃ + 6NH ₄ OH \longrightarrow	$2 \operatorname{Fe}(OH)_3 \downarrow + (NH_4)_2 \operatorname{SO}_4$
	$2 \text{ Fe(OH)}_3 \longrightarrow$	$Fe_2O_3 + 3H_2O$

Observation:

1. Weight of empty crucible	W ₁ =g
2. Weight of empty crucible + residue	
On first heating (45 min) $a = \dots g$	
On second heating ($10 \min$) b =g	
On third heating (10 min) $c = \dots g$	
∴ Constant weight of crucible + residue	$\mathbf{W}_2 = \dots \mathbf{g}$
3. Weight of residue $= (W_2 - W_1)$	W =g

Calculation:

Constant weight of residue,	W	[·] =;	g
-----------------------------	---	-----------------	---

Fe ₂ O ₃	:	2Fe	:	2FeSO ₄ (NH ₄) ₂ SO ₄ . 6H ₂ O
160	:	112	:	784.26
1	:	0.6994	:	4.9092

a) Quantity of Fe:

Hence,	$1 \text{ g Fe}_2\text{O}_3$	=	0.6994 g	g Fe
	\therefore W g Fe ₂ O ₃	=	W x 0.6994 g	; Fe
	i.e. A	=	g H	Fe

Thus the quantity of Fe present in 50ml diluted solution is $= A = \dots g$ Fe Quantity of Fe present in 250 ml i.e. in given solution is $= A \times 5 = \dots g$ Fe i.e. $B = \dots g$ Fe

b) Quantity of F.A.S.:

Results:

1.	50 ml of the diluted solution gave residue (weight of Fe_2O_3 residue)	(W) =g	=x 10 ⁻³ Kg
2.	Quantity of metal (Fe) in given solution	(B) =g	=x 10 ⁻³ Kg
3.	Quantity of metal salt [FeSO ₄ (NH ₄) ₂ SO ₄ .6H ₂ O] in the given solution	(C) =g	=x 10 ⁻³ Kg

b) Titrimetric Analysis

14. Calibration of Volumetric Apparatus

- **Aim** : To calibrate volumetric apparatus- burette, pipettes and volumetric flasks.
- **Appratus** : 50 ml burettes, 5, 10& 25 ml pipettes, 100 & 250 ml volumetric flasks.
- **Calibration :** For most of analytical purposes class A and class B glass apparatus are manufactured and are used without calibration. But for the highest accuracy all the glass apparatus (burette, pipettes, volumetric flasks etc) are need to be calibrated.

Cleaning of apparatus:

- 1. Saturated solution of powdered sodium or potassium dichromate in conc. sulphuric acid used in the form of <u>Cleaning Mixture</u>.
- 2. More efficient cleaning solution is a mixture of concentrated sulphuric acid and fuming nitric acid. This cleaning solution is used only when glass apparatus is very dirty and greasy, but must be handled with extreme caution.
- 3. Effective degrasing agent which is much quicker in action then a 'cleaning mixture' is obtained by dissolving <u>100g of potassium hydroxide in 50 ml of distilled water</u> and after cooling making up to 1 liter with industrial methylated spirit.
- 4. For cleaning the apparatus, it is filled with cleaning mixture and allows standing for several hours preferably overnight. Cleaning mixture is then poured off, then the apparatus is thoroughly rinsed with distilled water and allow to drain off until dry.

The calibration process can be carried out by two procedures

- i. Direct or Absolute Calibration Method &
- ii. Relative Calibration Method

i. **Direct or Absolute Calibration Method:** This Method involves weighing of water at 20° c as there is variation in density of water at different temperature. Therefore there is a variation in the volumes of water at various temperatures. It should be also noted that, there is little expansion / contraction of glass at different temperature. Due to this errors are arises in the measurement of volumes. To avoid this volume and weight of deionized water is noted at respective temperatures which different in different seasons & it is compared with standard volume of water at various temperature (Table No.1).

Temp	Volume	Temp	Volume	Temp	Volume	Temp	Volume
(⁰ C)	(ml)						
10	1.0013	20	1.0028	25	1.0040	30	1.0054
12	1.0015	21	1.0030	26	1.0043	31	1.0056
14	1.0018	22	1.0033	27	1.0045	32	1.0059
16	1.0021	23	1.0035	28	1.0048	34	1.0065
18	1.0024	24	1.0037	29	1.0051	35	1.0068

Table: - 1: Volume of 1 g water at various temperatures

ii. Relative Calibration Method

- **A.** In this method relationship between two items of glassware determined without knowing the absolute volume or standard volume of any one.
- **B.** Glassware's to be calibrated are washed / degreased and rinsed with distilled water.
- C. Set of pipettes, burettes and volumetric flasks are calibrated by relative calibration method as given below -
- 1. Clamp the labeled (for e.g.No.1) burette perfectly vertical position to the burette stand.
- **2.** Fill the burette with distilled water up to lower mark i.e.50 ml mark (at bottom side) by taking care that, there should not be any drop of liquid coming out from the burette (or there should not be any leakage).
- **3.** Here burette volume is supposed to be standard volume and hence its volume is compared with pipettes (25ml, 10ml & 5ml) and volumetric flasks (100ml & 250 ml).

4. Calibration of pipettes.

a) 25 ml pipette :-i) Take clean 25 ml pipette. ii) Suck by mouth the distilled (deionised) water carefully until it is well above the volume mark on stem. iii) Close the mouth of stem by index finger and hold pipette in the vertical position. iv) Allow the solution to come down slowly by releasing index finger. v) Press the index finger again when the lower limit of the meniscus is just against the volume mark on stem. See that the mark on the stem is inline with the level that of the eye. vi) Insert the pipette into burette which already contains water up to 50 ml mark. vii) Now release the index finger and deliver the distilled water in to burette. During the release of water touch the jet of pipette to the inner side of the burette to drain it completely. viii) Transfer last traces of water completely from pipette in to burette by usual procedure (do not blow pipette by mouth) ix) Now see the volume occupied by distilled water in burette, it should be exactly 25 ml. If not then try another 25 ml pipette, till the matching volume pipette is obtained. x) Now label this matched pipette as that of burette label (for e.g. No: 1)

- **b) 10 ml pipette:** i) Take clean 10 ml pipette and calibrate it against the same burette, by using similar procedure mentioned above. ii) Label this10 ml pipette as that of the burette (for e.g. No.1).
- c) **5 ml pipette :-** i) Take clean 5 ml pipette and calibrate it against the same burette, by using similar procedure mentioned above. ii) Label this 5 ml pipette as that of the burette (for e.g. No.1).
 - 5. Calibration of Volumetric flasks:-
- a) 250 ml Volumetric flasks: i) Prepare clean 50 ml burette (for e.g. No.1) and dry 250ml volumetric flasks ii) Fill the 50 ml burette up to the mark with distilled water and drain it five times (50 ml volume each time) in to the volumetric flasks. iii) If the 250 ml mark on the neck of flask coincides with the meniscus of the distilled water, then the 250 ml volumetric flask is said to be calibrated with respect to burette and pipettes. If the 250 ml water level does not match to the mark on the neck of flask then make a new marking of 250ml on the neck of the flask & label this flask accordingly (for e.g. No.1).
- **b) 100 ml Volumetric flask:** By using same burette, calibrate a clean 100 ml volumetric flask as mentioned above and label it as usual (for e.g. No.1)In this way the apparatus burette, pipette and volumetric flask required for volumetric analysis are calibrated and labeled set of apparatus prepared. Similarly required number of sets of calibrated apparatus is prepared.
- **Result:** All the apparatus required for volumetric analysis like burette, pipettes and volumetric flask are calibrated by using relative calibration method and 1 or 2 or 3 orsets are prepared.

Volumetric Apparatus

15. Analysis of Commercial Vinegar

Aim : To determine the percentage of acetic acid in commercial vinegar sample.

- **Chemicals** : Given vinegar sample in 250 ml volumetric flask, app. 0.1 N NaOH solution phenolphthalein indicator etc.
- Apparatus : 250 ml volumetric flask, burette, pipette, conical flask etc
- **Theory** : Commercial vinegar sample usually contains 4-5 % acetic acid. This acetic acid in vinegar solution is titrated against standard solution of NaOH and content of acetic acid in vinegar is determined.

Procedure

Part –I: Preparation of standard solⁿ of oxalic acid and standardization of NaOH

- 1. Weigh accurately 1.575 g of oxalic acid on a watch glass and transfer it in beaker, Dissolve it in minimum distilled water and transfer this solution to 250 ml volumetric flask. Dilute the contents up to the mark with distilled water and shake well. It gives standard 0.1 N oxalic acid solution (**Primary standard**).
- 2. Take 25ml of 0.1N oxalic acid solution in conical flask. Add two drops of phenolphthalein indicator and titrate this solution against supplied NaOH solution from the burette.
- 3. Take three readings and find out constant burette reading as 'X 'ml.
- 4. Calculate the exact normality of NaOH solution. (Secondary standard). Part-II: Determination of % of acetic acid commercial sample of Vinegar
- 1. Dilute the given sample of commercial Vinegar to 250 ml with distilled water.
- 2. Pipette out 25 ml of this diluted solution of Vinegar in 250 ml conical flask.
- 3. Add two drops of phenolphthalein indicator in conical flask.
- 4. Add standardized NaOH from burette till colour changes from colourless to just pink.
- 5. Take two more readings as above and find out CBR as 'Y' ml.

Observations and Observation table:

Part –I: Preparation of standard solⁿ of oxalic acid and standardization of NaOH **Observations:**

1.	Weight of empty watch glass	$\mathbf{W}_1 ~=~ \dots \dots \mathbf{g}$
2.	Weight of oxalic acid	W = 1.575 g
3.	Weight of watch glass + sample	$W_2 = \ldots g$

Observations :	Observation 7	Table:			
 In Burette : App. 0.1 N NaOH solⁿ In conical flask : 25 ml 0.1 N oxalic acid solution In diagter : Phenolabethologia 	Burette level	I Read I	Burett lings i II	te in ml III	CBR
4. End point : Colorless to Pink	Final level Initial level Difference	0.0	0.0	0.0	X= ml

Part-II: Determination of % of acetic acid commercial sample of Vinegar

Observations	5:	C	Observation T	Table:				
1. In Burette	: Z N NaOH solution							_
	(Secondary Standard)		Burette	I	Buret	te	CBR	
2. By Pipette	: 25 ml diluted vinegar		level	Read	lings i	in ml		
	solution			Ι	ΙΙ	III		
3.Indicator	: Phenolphthalein (2-3drops)		Final level]
4. End point	: Colorless to Pink		Initial level	0.0	0.0	0.0	Y=ml	
			Difference					

CH₃COONa +H₂O **Reaction:** $CH_3COOH + NaOH$ ------>

Calculations:

1) To determine exact Normality of NaOH solution:

NaOH Oxalic acid

$$N_1V_1 = N_2V_2$$

 $N_1 = \frac{0.1 \times 25}{V_2}$
 $N_1 = \frac{0.1 \times 25}{X}$
i.e $Z = \dots N$ NaOH
2) To determine percentage of acetic acid in Vinegar :
1 ml 0.1 N NaOH = 0.006 g acetic acid
1 ml Z N NaOH = $\frac{Z \times 0.006}{0.1}$ g acetic acid
i.e A = \dots g acetic acid

Thus

1 ml Z N NaOH = Ag acetic acid \therefore Y ml Z N NaOH = A x Y g acetic acid in 25 ml dil. solution = g acetic acid in 25 ml dil. solution i.e. B Now 25 ml diluted solution $= B = \dots g$ of acetic acid. \therefore 250 ml diluted solution = B x 10 = g acetic acid i.e. C =..... g acetic acid **Given:** Volume of Vinegar $= D = \dots ml$ (Ask for D) Now \therefore D ml given solution contains = C g acetic acid \therefore 100 ml given solution \cong <u>C x 100</u> % acetic acid D =·····% acetic acid i.e.E

Results:

1.	Exact normality of given NaOH	$Z = \dots N$ of NaOH
2.	Percentage of acetic acid in Vinegar	E = %

16. Total Hardness of Water

Aim	: To prepare standard solution of calcium chloride from calcium carbonate and determine total hardness of given water sample.					
Apparatus	: Burette, pipette, conical flask, measuring flask, watch glass, beakers, fractional weight box etc.					
Chemicals	: Given sample of hard water, EDTA (0.01M), CaCO ₃ , buffer solution (pH 10) Eriochrome black –T indicator etc.					
Principle	: Hardness of water is due to presence of Ca and Mg salts. EDTA reacts quantitatively with Ca and Mg to produce soluble stable chelates;					
	$M + In \longrightarrow M-In$					
	M-In + EDTA \longrightarrow M-EDTA + In					
	Where, $M = Metal$ ion, $In = Indicator$.					
Procedure	:					

Part I: Preparation of standard CaCl₂ solution from CaCO₃

Weigh accurately 0.250 g of CaCO₃ on watch glass and dissolve in minimum amount of conc. HCl and distilled water (About 5 ml Conc. HCl and 50 ml distilled water). Transfer this solution to 250ml volumetric flask by taking usual precautions. Dilute it up to the mark with distilled water and shake well.

Part II: Standardisation of EDTA solution:-

Pipette out 25 ml of standard 0.01 M CaCl₂ solution in conical flask. Add to it 5 ml buffer solution (pH10) and Eriochrome black – T indicator. Titrate it against given EDTA solution till colour changes from wine red to sky blue. Find out CBR as X ml.

Part III: Determination of total hardness of water sample:-

Dilute the given hard water sample to 250 ml with distilled water & shake well Pipette out 25 ml of this diluted sample solution in conical flask . Add to it 5 ml buffer solution (pH 10) and Eriochrome black –T indicator. Titrate it against 0.01M EDTA solutions till colour changes from wine red to sky blue. Find out CBR as Y ml.

Part I

Observations:-

1.	Weight of empty watch glass	$W_1 = \ldots g$
2.	Weight of CaCO ₃	W = 0.250 g
3.	Weight of watch glass + CaCO ₃	$W_2 = \ldots \ldots g$

Part II

Observations:-

1.	Solution in burette :	Given 0.01 EDTA solution
2.	Solution conical flask :	25ml standard CaCl2 solution by pipette
		+ 5ml buffer solution (pH 10).
3.	Indicator :	Eriochrome black -T (Pinch of solid or
		3-4 drops liquid)
4.	End point :	Wine red to sky blue.

Observation Table

Burette	Bure	C.B.R		
level	Ι	II	III	ml
Final level				
Initial level	0.0	0.0	0.0	X=ml
Difference				

Part III

Observations:-

1.	Solution in burette	:	Given 0.01 EDTA solution
2.	Solution conical flask	:	25ml standard CaCl ₂ solution by pipette
			+ 5ml buffer solution (pH 10).
3.	Indicator	:	Eriochrome black –T (Pinch of solid or
			3-4 drops liquid)
4.	End point	:	Wine red to sky blue.

Observation Table:- Draw as above & CBR = Y ml

Reactions: -

 $Ca^{2+} + Na_2H_2EDTA \longrightarrow 2Na^+ + [CaEDTA]^{-2} + 2H^+$

Calculations :-

A) Standardisation of Given EDTA

EDTA Vs CaCl₂ $N_1V_1 = N_2V_2$ $N_1 = \frac{N_2 X V_2}{V_1}$ $N_1 = \frac{0.01 \times 25}{X}$ i.e. $Z = \dots M$ EDTA \therefore Molarity of EDTA = Z = Structure of Metal-EDTA Complex:-

Metal-EDTA complex

B) Hardness of water sample:-

We have	
1 ml of 0.01 M EDTA = 0	.001 g CaCO ₃
\therefore Y ml of Z M EDTA = $\frac{2}{3}$	$\frac{2 \times Y \times 0.001}{0.01}$ g CaCO ₃
A = .	g CaCO ₃
Thus, 25 ml of diluted water sample	$= A g CaCO_3$
250 ml of diluted water sample	= A x 10 g CaCO ₃
i.e B	= g CaCO ₃
Hardness in ppm:	
Now, 250 ml of sample	= B g CaCO ₃
10 ⁶ ml of sample	$= \frac{B \times 10^6}{250} g CaCO_3$
i.e C	= ppm

: Total hardness of water as parts per million (ppm) of $CaCO_3 = C = \dots$ ppm

Results

1	25ml of standard calcium chloride require	$X = \dots \dots ml$ of given EDTA sol ⁿ
2	25 ml of diluted sample of water	$Y = \dots ml$ of given EDTA sol ⁿ
3	Total hardness of given sample of water	C =ppm
17. Preparation of Ferrous Ammonium Sulphate (Mohr's Salt)

- **Aim** : To prepare ferrous ammonium sulphate (F.A.S.) from ferrous sulphate and ammonium sulphate.
- **Chemicals** : Ferrous sulphate (FeSO₄.7H₂O), ammonium sulpahte (NH₄)₂ SO₄, ethyl alcohol etc.
- Apparatus : 250 ml Beakers, glass rod, measuring cylinder etc.

Procedure :

- 1. Weigh 10 g of Ferrous Sulphate and transfer in to beaker. Add in it about 60ml distilled water and 5 ml dil. H₂SO₄, dissolve by boiling the solution.
- 2. Add to it 5g of ammonium sulphate with constant stirring.
- 3. Add a bright iron nail to maintain iron content.
- 4. Boil the solution till the crystallization points is just reached (avoid formation of crystal masses).
- 5. Cool and add about 10 ml ethyl alcohol. Faint green coloured crystals of F.A.S. are obtained.
- 6. Now filter the product on Buchner funnel and wash the product with little alcohol. Dry and weigh the product.

Observations:

- i. Ferrous sulphate $FeSO_4.7H_2O = \dots g$
- ii. Ammonium sulpahte $(NH_4)_2 SO_4 = \dots g$

Reaction:

FeSO ₄	+ $(NH_4)_2 SO_4 + 6H_2O$	>	FeSO ₄ (NH ₄) ₂ SO ₄ ·6H ₂ O
Simple salt	Simple salt		Double salt (F.A.S.)

Calculations:

a) Theoretical yield	b) Percent % yield
From chemical reaction we get	
$FeSO_4.7H_2O = FeSO_4(NH_4)_2SO_4.6H_2O$	Weight of the product $= X = \dots g$
278 392	\therefore 14 g product F.A.S = 100 % yield
Now,	
278 g Ferrous sulphate = 392 g F.A.S	\therefore X g product F.A.S = <u>X x 100</u> %
\therefore 10 g Ferrous sulphate = <u>10 x 392</u> g F.A.S.	14
278	i.e. B =%
= 14 g	
\therefore Theoretical yield of product (A) = 14 g	

Results:

1.	Colour of the product F.A.S.	Faint green	
2	Weight of the product F.A.S.	X = g	= x 10 ⁻³ Kg
3.	Theoretical yield of product	A = g	= x 10 ⁻³ Kg
4.	Practical % yield of product	B = %	

18. Preparation of Tetraamminecopper(II) sulphate

- Aim : To Prepare Tetramminecopper(II) sulphate. [Cu (NH₃)₄] SO₄. H₂O
- **Chemicals** : Copper sulphate, liquor ammonia, ethyl alcohol, dil. H₂SO₄
- Apparatus : 250 ml beakers, glass rod, measuring cylinder, etc.

Procedure :

- 1. Weigh 5 g of copper sulphate and dissolve in 20 ml distilled water (add 1-2 drops of dil. H_2SO_4 if necessary).
- 2. Add liquor ammonia (1 T.T.) with constant stirring, until the bluish precipitate of Cu(OH)₂ formed first, completely dissolves to give a clear deep blue solution and there is a distinct smell of ammonia over the beaker.
- 3. Cool the beaker in water bath.
- 4. Add ethanol slowly from a common burette with constant stirring until the blue colour is nearly discharged (about 50 ml).
- 5. Heat the beaker carefully on water bath at about 70° C for 15 minutes by keeping watch glass on beaker.
- 6. Allow it to stand and cool on an asbestos sheet to room temperature.
- 7. Filter the deep purple coloured crystals on Buchner funnel, wash with little alcohol and dry in oven and weigh the product.

Reaction:

 $CuSO_4 + 4 NH_3 + H_2O$ Ethyl alco

Ethyl alcohol

[Cu (NH₃)₄] SO₄.H₂O

Calculations:

b) Practical % yield of product
Weight of the product = $X = \dots g$
\therefore 4.92 g of Complex = 100 % yield
\therefore X g Complex = <u>X x 100</u> %
4.92
i.e. B = %

Results:

1.	Colour of the product	Deep purple	
2.	Weight of the product	X = g	= x 10 ⁻³ Kg
3.	Theoretical yield of product	A = g	= x 10 ⁻³ Kg
4.	Practical % yield of product	B =%	

19. Preparation of Chlorpentamminecobalt(III) chloride

: To Prepare chloropentaamminecobalt (III) chloride. [Co (NH₃)₅Cl] Cl₂

Chemicals :1) Cobaltous chloride, 2) Ammonium chloride, 3) Ammonia.

4) Hydrogen peroxide (20 Volume) 5) Hydrochloric acid.

Procedure

:

Aim

i) Take 5 g cobaltous chloride in a 250 ml beaker and dissolve it in minimum distilled water.
ii) Weigh 10 g ammonium chloride and dissolve in 40 ml liquor ammonia. iii) Add this ammonical ammonium chloride solution to the cobaltous chloride solution with constant stirring. Cool the solution in a water bath. iv) Add by a burette 2 ml H₂O₂ at a time with constant stirring until the addition of 25 ml H₂O₂ is complete v) Continue the stirring of solution till the effervescence O₂ ceases (it take about 15 minutes.) vi)Then neutralize this solution with Conc. HCl. (Test it by litmus paper, both blue and red litmus should remain unaffected.) vii) Then add 10 ml conc. HCl in excess (Blue litmus paper should turn red). viii) Heat the solution gently to boiling. ix) Allow it to cool to room temperature when purple coloured crystals separate out. x) Filter the product and wash with alcohol. Dry and record the yield.

Observation:

i)	Cobaltous chloride	=	5.0 g
ii)	Ammonium chloride	=	10.0 g
iii)	Ammonia	=	40 ml
iv)	H_2O_2	=	25 ml
v)	Con. HCl	=	ml.
Reactions:	i) H_2O_2		\longrightarrow H ₂ O + (O)
	ii) $2CoCl_2 + 2NH_4Cl +$	[O]	\longrightarrow 2CoCl ₃ + 2 NH ₃ + H ₂ O

Calculations :

1) Theoretical yield	2)	Practica	l percentage	e yiel	d
From the chemical reaction we g	et, Wig	Wight of Product = $X = \dots$ g			
$CoCl_2. 6H_2O = [Co(NH)]$	I ₃) ₅ Cl] Cl ₂ .				
237.93 = 250.43	Nov	<i>v</i> , 5.26	g of complex	x =	100%
Now, 237.93 g CoCl ₂ . $6H_2O = 2$	250.43 g of ∴ '	X' g of c	omplex	=	'Х'х
complex		-	100 %		
\therefore 5.g CoCl ₂ . 6H ₂ O = <u>5 x 250</u>	0.43 g of				5.26
complex	i.	e. B		=	
237.93			%		
i.e. A $= 5.269 \text{ g}$	of the complex				

Result :

i)	Weight of product	=	X = g		=x 10 ⁻³ kg
ii)	Theoretical yield	=	A =g		$= \dots 10^{-3} \text{kg}$
iii)	Practical % yield	=	В	%	=%

.20. Preparation of hexamminenickel (II) chloride

Aim : To Prepare of Hexaamminenickel(II) chloride. [Ni(NH₃)₆] Cl₂

Chemicals : 1) Nickel Chloride 2) Ammonia Buffer (pH 10) 3) Ethyl alcohol :

Procedure

i) Weigh 5 g Nickel Chloride and dissolve it in 20 ml warm distilled water by constant stirring ii) keep it in a ice bath for about 30 min. iii) Add 30 ml ammonia buffer with constant stirring until the blue ppt of Nickel hydroxide first formed is dissolves iv) Cool the solution in ice bath. The crystals of Hexaamminenickel(II) chloride separates out v) Add 50 ml ethyl alcohol. Filter the product on Buckner funneland wash with little alcohol. v) Dry the product and weigh it on rough balance

Reactions:

Calculations :

1) Theoretical yield	2) Practical percentage yield
From the chemical reaction we get,	Weight of the product = $X = \dots g$
$NiCl_{2.6}H_{2}O \equiv [Ni(NH_{3})_{6}] Cl_{2}$	Now, 4.87 g of complex = 100% yield
$337.7 \equiv 231.71$ Now,	$\therefore 'X' \text{ g of complex} = \frac{X' \times 100}{5}\%$
337.7 g NiCl _{2.6} H ₂ O \equiv 231.71 g complex	4.87
$\therefore 5 \text{ g NiCl}_{2.6}\text{H}_{2}\text{O} = 5 \times 231.71 \text{ g complex}$	$1.e B \qquad = \qquad \dots \qquad \forall 0$
337.7	
= 4.87 g of the complex	
i.e. $A = 4.87$ g complex	

Result :

i)	Weight of product	=	X =	g	=x 10 ⁻³ kg
ii)	Theoretical yield	=	A =	g	=10 ⁻³ kg
iii)	Practical % yield	=	В	%	=%

Inorganic Qualitative Analysis

21. Semi –Micro Qualitative Analysis

Aim: Give the complete qualitative analysis of the mixture given in capsule mark A. N. B.

- 1. Credit will be given for neat and systematic work and intelligent interpretation of observation.
- 2. Observation as soon as they are made should be entered in answer book.
- **3.** Dry and Preliminary test must be done and examiner's signature must be obtained before preparing the solution.
- 4. Positive radicals must be confirmed by use of spot test wherever possible.

Analysis of Inorganic Binary Mixture is performed by following Tests:-

A] Preliminary Tests

- B] Dry Test for Basic Radicals (Cations)
- C] Dry Tests for Acidic Radicals (Anions)
- D) Detection and Confirmation of Acidic Radicals
 - i. Preparation of O.S.
 - ii. Detection of Groups
 - iii. Group Analysis

Inorganic Mixture No.....

Test	Observation	Inference
A] Preliminary Tests:		
1. Colour	1. Blue	Cu ⁺⁺ may be present
	2. Bluish green or Green	Cu ⁺⁺ , Cr ⁺⁺⁺ , Ni ⁺⁺ may be present
	3. Faint pink	Mn ⁺⁺ may be present
	4. Coloured	Cu ⁺⁺ , Fe ⁺⁺⁺ , Cr ⁺⁺⁺ , Ni ⁺⁺ may be present
	5. White	Zn ⁺⁺ , NH ₄ ⁺ , K ⁺ may be present
2. Nature or Appearance	1. Crystalline	Water soluble salts generally containing Cl ⁻ , Br ⁻ , I ⁻ , NO ₃ ⁻ , SO ₄ , NH ₄ ⁺ and K ⁺ may be present
	2. Hygroscopic (moist)	Chlorides of Cu ⁺⁺ , Fe ⁺⁺ , Cr ⁺⁺⁺ , Zn ⁺⁺ , Mn ⁺⁺ , Mg ⁺⁺ etc may be present
	3. Amorphous	Water insoluble salts generally containing CO ₃ may be present

B] Dry Test for Basic Radicals (Cations):

1. Action of Heat : Heat small quantity of the Mixture in a clean and dry	1. Substance decrepitates		Crystalline salts like Pb(NO ₃) ₂ , KBr , K ₂ SO ₄ etc. may be present
test tube at first gently and	2. Substance	fuses and water	Salts of Ba^{++} , Ca^{++} , K^+ and
then strongly.	vapours conde	ense on the	nitrates of other radicals
	cooler part of the test tube.		containing water may be present
	3. Brown fum	ies	NO_3^- , Br ⁻ may be present
	4. Violate fumes		I ⁻ may be present
	5. White sublimate		NH_4^+ and Cl^- may be present.
	6. Colour cha	anges	
	When Hot	When Cold	
	Yellow	White	Zn ⁺⁺ may be present
	Brown	Yellow	Pb ⁺⁺ may be present
	Brown	Brown	Cd ⁺⁺ may be present

	Black	Reddish brown	Fe ⁺⁺ mag	y be present	
	Green	Green	Cr ⁺⁺ mag	y be present	
	Black	Black	Carbona	tes of Cu ⁺⁺ , Ni ⁺⁺ , Mn ⁺⁺	
			may be	present	
	7. Coloured	infusible	Cu ⁺⁺ ,Fe	+++, Cr+++, Ni++, Mn++ may	
	residue		be prese	nt	
	8. White infu	sible residue	Al+++, B	a ⁺⁺ , Ca ⁺⁺ , Mg ⁺⁺ may be	
			present		
2. Charcoal Test :	1. Decrepitati	1. Decrepitation		ine salts like Pb (NO ₃) ₂ ,	
Heat small quantity of a			KBr, K	₂ SO ₄ etc may be present	
mixture in a freshly	2. Deflagrati	on:Charcoal			
prepared cavity on a	glows due t	o supply of O ₂	NO ₃ ⁻ ma	y be present	
charcoal.	from a com	p. in the mixture			
(m	3.Fusion (Sub	3.Fusion (Substance fuses		Salt of Ba ⁺⁺ , Ca ⁺⁺ , K +	
Blow pipe	and sinks in	and sinks in the cavity)		may be present	
Charcoal	4. Brown gas	4. Brown gas and brown		Cd ⁺⁺ may be present	
- LAR	5 Coloured in	5. Coloured infusible residue		e ⁺⁺⁺ Cr ⁺⁺⁺ Ni ⁺⁺	
				ay be present	
	6. White infu	6. White infusible residue		Ba ⁺⁺ , Ca ⁺⁺ , Zn ⁺⁺ , Mg ⁺⁺	
			may be	may be present	
3. Cohalt Nitrate Test · This test is to be performed only when a white infusible residue is					
	obtained in the c	harcoal cavity.			
Moisten white residu	e 1. Blue residu	ıe	A1+++ ma	ay be present	
with 2 drops of coba	lt 2. Green resid	lue	Zn ⁺⁺ may be present		
nitrate solution & heat on	a 3. Grey residu	ue	Ba ⁺⁺ may be present		
charcoal.					
4. ACUON OF NAUH :	- Evoluction of	NIL cos turino	NUL +	1 /	
warm	Evaluation of	NH3 gas turing	\mathbf{NH}_4 m	ay be present	
warm	moist turmeric paper red /				
	blown				
C] Dry Tests For Acid	lic Radicals (A)	nions):			
1.Action of H ₂ SO ₄	1. Brisk efferves	scence of CO ₂ gas	s turning	CO_3 may be present	
Mixture + dil H ₂ SO ₄	fresh lime wa	ter milky.			
(heat if necessary)	(Collect these fumes in a second dry test				
	tube by holding it on the mouth of first				
	test tube + lim	ne water)			

2. Action of	1. Reddish brown fumes of NO_2 or Br_2	Br^{-} or NO_2^{-} present
conc. H ₂ SO ₄	evolved	
	(Note: Generally Br ₂ is immediately	
Mixture + conc. H_2SO_4	evolved in cold while NO ₂ is evolved on	
(warm carefully)	heating)	
	2. Violet fumes of I ₂ evolved turning	I ⁻ present
	starch paper blue.	
	3. Colourless pungent smelling gas (HCl)	Cl ⁻ present
	giving white fumes when a rod dipped	
	in NH4OH solution is brought near the	
	mouth of the test tube.	
	4. No evaluation of coloured or	Cl ⁻ , Br ⁻ , I ⁻ & NO ₃ ⁻
	colourless fumes.	absent
3 Action of MnO ₂ &	1. Reddish brown fumes	Br [–] Present
conc. H ₂ SO ₄	2. Violet vapors turning moist starch	I - Present
$Mix + MnO_2 + conc.$	paper blue- black	
H_2SO_4	3. Pungent smelling yellowish green Cl ₂	Cl [–] Present
(warm carefully)	gas turning moist blue litmus paper	
	first red and then white(i.e. bleaching	
	action)	

D) Detection and Confirmation of Acidic Radicals:

For convenience acidic radicals (anions) are classified in following four groups:

Group I	:	CO3
Group II	:	NO_3^-
Group III	:	Cl ⁻ , Br ⁻ , I ⁻
Group IV	:	$SO_4^{}$

Test	Observation	Inference
Group I: CO ₃		
1. Mix. + dil. H_2SO_4	Brisk effervescence of CO ₂ turning lime water	CO ₃ present
warm if necessary	milky. (Collect these fumes in a second dry test tube by	
	holding it on the mouth of first test tube + lime water).	
C.T. for CO ₃ ···		
1. Mix + dil. HCl warm	Effervescence of CO ₂ gas turning lime water milky.	CO ₃ present
if necessary		
2. $Mix + K_2Cr_2O_7 +$	Effervescence of CO ₂ gas turning lime water milky	CO ₃ present
dil. H ₂ SO ₄		

Preparation of Water Extract:-

100 mg Mixture in T.T. + half T.T. distilled water – Boil for few minutes and filter. Filtrate is uses as <u>water extract</u> for further tests.

Preparation of Sodium carbonate extract (Na₂CO₃ extract):

100 mg mixture + 200 mg anhydrous sodium carbonate + half T.T. distilled water. Boil for minutes and filter. Filtrate is used as '**Sodium carbonate extract**'.

Group II : NO ₃ -			
10 mg mixture + 2-3 Pieces of Cu fillings +		Evaluation of pale brown	NO ₃ ⁻ Present
5 drops of conc. H ₂ SO ₄ . I	Heat on water bath	gas seen directly from	
		mouth of the test tube	
C.T. for NO ₃ ⁻			
5 drops of Na ₂ CO ₃ extrac	et + few drops of	Brown ring is formed at	NO ₃ ⁻ Confirmed
Conc. H ₂ SO ₄ cool well an	nd from the side	the junction of two	
of the test tube add carefu	ully with the	layers	
dropper freshly prepared	d FeSO ₄ solution		
Group III: Cl ⁻ , Br ⁻ , I	_		
1. Action of MnO ₂ &	1.Pungent smellin	g colourless gas	
$\underline{\mathrm{H}_{2}\mathrm{SO}_{4}}$	giving white fumes when a rod		Cl ⁻ present
M_1X . + M_1O_2 + conc.	dipped in NH ₄ OH solution is brought		
(12504)	near the mouth of	of the test tube.	D
(warm carefully)	2. Brownish red vapors turning moist		Br ⁻ present
	starch paper ye		
	3. Violet vapors tu	Irning moist starch	T- (
	paper blue-blac	К.	1 ⁻ present
2. Confirmatory Tests	1 Dink or violet CHCL lever		I ⁻ present &
Water extract + Fresh	1. This of violet Chers layer		confirmed
Chlorine water +	2. Brown or yellowish brown CHCl ₃		Br ⁻ present &
CHCl ₃ shake well and	layer		confirmed
observe colour of	3. Both aqueous a	and CHCl ₃ layer	
lower layer	remains colour	less	Cl ⁻ confirmed

Distinction between Br- & NO₃:

Use two dry test tubes for this test. In first test tube take mixture + MnO₂ + Conc. H₂SO₄, warm carefully, evaluation of red brown fumes. Collect these fumes in a second dry test tube by holding it on the mouth of first test tube. When sufficient fumes get collected in the second test tube, take it away and add about 1 ml distilled water and shake well.

If distilled water becomes **yellow in colour, it indicates the presence of Br**. If it remains colourless, it indicates presence of NO_3^- .

Group IV : SO ₄			
Na ₂ CO ₃ extract + dil. HCl	White ppt. insoluble in	SO ₄ present and confirmed	
+ BaCl ₂ solution	conc. HCl		
Given mixture contains Acidic Radicals: 1			

E) Detection of Basic Radicals:

i) Preparation of Original Solution (O.S.):

Try the solubility of small quantity of the substance in the following solvent, first in cold then on warming and then on boiling i) water ii) dil. HCl iii) Conc. HCl Thus prepare one test tube O.S. from about 1 g of mixture (filter if necessary).

∴ O.S. prepared in

Note: If mixture is soluble in conc. HCl dilute it with water carefully.

iii) Group Analysis (Separation, Detection and Confirmation of Basic Radicals)

Analysis of Group II : Cd⁺⁺ & Cu⁺⁺

Test	Observation	Inference
1. Observe colour of ppt	 Yellow Black 	Cd ⁺⁺ present Cu ⁺⁺ present
2. Black ppt. of group II + 1:4 HNO ₃ and boil	ppt. dissolves	Say this solution (a)
3. Solution (a) + NaOH or NH ₄ OH	Bluish ppt. soluble in excess NH4OH forming a deep blue solution	Cu ⁺⁺ present
C.T. For Cd ⁺⁺ :		
1. Yellow ppt. of Cadmium + dil. HNO ₃ heat with Stirring in water bath.	ppt. dissolves	Solution (b)
2. Solution (b) + $K_2Cr_2O_7$	Yellowish ppt	Cd ⁺⁺ confirmed
3. Spot Test : Solution (b) + NH ₄ CNS till sol ⁿ become colourless + crystals of KI + 2 drop of diphenyl carbazide.	Violet coloration	Cd ⁺⁺ confirmed
C.T. for Cu ⁺⁺ :		
Solution (a) + dil. acetic acid + K ₄ [Fe(CN) ₆] solution	Reddish brown or chocolate red ppt.	Cu ⁺⁺ confirmed
Spot Test : 1. Drop of solution (a) + drop of rubeanic acid & expose to ammonia	Olive green colour	Cu ⁺⁺ confirmed
2. One drop of sol ⁿ (a) or O.S. on filter paper + one drop cupron and expose to ammonia	Green colour	Cu ⁺⁺ confirmed

Analysis of Group III A: Al⁺⁺⁺ & Fe⁺⁺⁺ & Cr⁺⁺⁺

Test	Observation	Inference
1. Observe colour of ppt.	1. Reddish brown	Fe ⁺⁺⁺ present
	2. Bluish green	Cr +++ present
	3. White gelatinous	Al ⁺⁺⁺ present
2. ppt. of IIIA + dil. HCl	ppt. dissolves	Solution (a)
C.T. or Fe +++ :		

Solution (a) + KCNS or NH ₄ CNS	Blood red ppt.	Fe +++ confirmed
Spot test : One drop of solution (a) in a spot plate + K ₄ [Fe(CN) ₆] solution	Deep blue ppt.	Fe +++ confirmed
C.T. for Cr ⁺⁺⁺ :		
Solution (a) + dil. acetic acid till acidic + drop of lead acetate	Yellow ppt.	Cr +++ confirmed
Spot test : Two drops of solution (a) on spot plate + 2 drops of 1:1 H ₂ SO ₄ + 2 drops of diphenyl carbozide	Violet colour	Cr +++ confirmed
C.T. for Al +++ :		
Solution (a) + NaOH	White gelatinous ppt. soluble in excess NaOH	Al +++ confirmed
Spot test : 1. Drop of solution (a) on filter paper + drop of alizarin & expose to NH ₃ .	Violet colour	Al +++ confirmed
2. Two drops of solution (a) or O.S. on spot plate + drop of dil. HCl + 4 drops of ammonium acetate + 3 drops of Aluminon wait for 5 min.+ excess of ammonical (NH ₄) ₂ CO ₃	Red colour or ppt.	Al +++ confirmed

Analysis of Group III B: Zn ⁺⁺, Mn⁺⁺, Ni⁺⁺ & Co⁺⁺

TEST	OBSERVATION	INFERENCE
1. Observe colour of ppt.	1.White or gray insoluble in acetic acid	Zn ⁺⁺ present
	2. Pinkish or flesh ppt.soluble in acetic acid. Say this solution (a)	Mn ⁺⁺ present
	3. Black ppt. insoluble in dil. HCl	Ni ⁺⁺ / Co ⁺⁺ present
i) White or Grey ppt. of III B + conc. HCl boil	White or Grey ppt. dissolves	Solution (b)
ii) Black ppt. of Ni^{+++}/Co^{++} +	Black ppt. dissolves	Solution (c)
$(HCl + HNO_3. 1:4)$ warm	Observe colour of	
	solution (c)	
	i. Pink solution	Co ⁺⁺ present
	ii. Green solution	Ni ⁺⁺ present
C.T. for Zn ++ :		
1.Solution (b) + $K_4[Fe(CN)_6]$	White / bluish white ppt. insoluble in dil. HCl	Zn ⁺⁺ confirmed

2. Solution (b) + NaOH	Bluish white ppt. insoluble in	Zn ⁺⁺ confirmed
	excess& reappears by H_2S	
Spot Tost .	gas	
Spot rest: 1 Solution (h) or a drop of OS in	Immediate blue ppt	7n ⁺⁺ confirmed
spot plate $+$ a drop of conner acetate	or	Zii commice
+ 3-4 drops of ammonium mercuric	Violet colour	
thiocynate and rub with glass rod		
$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$		
2. Solution (b) of a drop of 0.5. In spot	Green ppt	7n ++ confirmed
$farricyanide \pm a drop of$	Green ppt.	Zii commineu
diphenylamine in glacial acetic acid		
C.T. for Mn ⁺⁺ :		1
1. Solution (a) + NaOH	White ppt. soluble in excess	Mn ⁺⁺ confirmed
	but turns brown on expose to	
	air	
Snot Test ·		
1 Drop of Solution (b) on spot plate	Purple or Violet colour	Mn ⁺⁺ confirmed
+ solid sodium bismuthate. Stir well	Turple of Violet colour	ivin commed
2. Sol ⁿ (a) or drop of O.S. on filter	Blue colour	Mn ⁺⁺ confirmed
paper + a drop of NaOH + a drop	(fades on standing)	
of Sodium tartrate + a drop of	-	
Benzidine		
C.T. for Co ⁺⁺		
Drop of Solution (c) on filter paper +	Red brown colour	Co ⁺⁺ confirmed
drop of dil. HCl + one drop of		
α -nitroso β - naphthol		
C.T. for Ni ⁺⁺ :		
Solution (c) + NaOH	Pale green ppt.	Ni ⁺⁺ confirmed
Spot Test :		
1. Drop of Solution (c) on filter		
paper + drop of Dimethyl	Red / pink colour	Ni ⁺⁺ confirmed
glyoxime and expose to ammonia		
2. Drop of Solution (c) on filter paper	Blue colour	Ni ⁺⁺ confirmed
+ Rubeanic acid and expose to		
ammonia		

Analysis of IV Group: Ba ⁺⁺ & Ca⁺⁺

Test	Observation	Inference
i) White ppt.	Dissolve the white ppt. of IV group in dil. acetic acid by warming	say this Solution (a)

ii) Solution (a) + CaSO ₄ solution	1. White ppt. immediately obtained	Ba ⁺⁺ present
	2. No ppt. or turbidity even on warming the solution	Ca ⁺⁺ present
C.T. for Ba ⁺⁺ :		
1. Solution (a) + K ₂ CrO ₄ i.e. Potassium chromate	Yellow ppt. insoluble in acetic acid	Ba ⁺⁺ confirmed
2. Prepare paste of mixture in conc. HCl and take flame test	Green flame	Ba ⁺⁺ confirmed
C.T. for Ca ⁺⁺ :		
Solution (a) + Ammonium oxalate solution	White ppt. insoluble in acetic acid	Ca ⁺⁺ confirmed
Spot Test : Drop of solution (a) on filter paper + drop of NH ₄ OH + drop of sodium rhodizonate + 2 drops of NaOH solution	Violet colour	Ca ⁺⁺ confirmed

Analysis of Group V: Mg⁺⁺

Test	Observation	Inference
1. Colour of ppt.	White	Mg ⁺⁺ present
2. ppt. of group V + dil. HCl	Soluble	Solution (a)
C.T. for Mg ⁺⁺ :		
Solution (a) + Sodium hypoiodide		
solution (add iodine solution to		
NaOH drop by till yellow colour is	Reddish brown ppt.	Mg ⁺⁺ confirmed
just obtained)		
Spot Test :		
1. Solution (a) or 5drops O.S. on spot	Blue ppt. or colour	Mg ⁺⁺ confirmed
plate + Mangeson–I. Stir with		
glass rod and add NaOH till		
alkaline.		
2. Solution (a) in spot plate + 2 drop	Red ppt. or colour	Mg ⁺⁺ confirmed
of titan yellow + 4 drop of NaOH		

Analysis of Groups VI: K⁺ & NH₄⁺

Note: Use water extract (W. E) for detection

Test	Observation	Inference
	1. Evolution of NH ₃ turning	NH ₄ ⁺ is present
W.E. + NaOH solution and heat	moist Turmeric paper red	
	2. Evolution of NH ₃ gives	NH ₄ ⁺ present
	white fumes to HCl rod when	
	kept near mouth of T.T	
	3. No evolution of NH ₃	K ⁺ is present
C.T. for NH ₄ ⁺ :		
W.E. + Nessler 's reagent	Brown ppt.	NH ₄ ⁺ confirmed
Test for K ⁺ :		
1. Water extract + picric acid solution	Crystalline yellow ppt.	K ⁺ Present and
and rub with glass rod.		confirmed
2. Water extract + perchloric acid	Crystalline white ppt.	K ⁺ confirmed
(HClO ₄) solution.		
3. Flame Test: - Prepare paste of	Violet flame by naked eye and	K ⁺ confirmed.
mixture in evaporating dish with	crimson red seen through	
conc. HCl + ethanol, take flame	cobalt glass.	
test.		

Preparation of Nessler's reagent: Few drops of HgCl₂ + Add drop by drop KI solution till scarlet red ppt. formed which just redissolved + equal volume of dil. NaOH.

Results: The given mixture contains:

Positive Radicals / Basic Radicals	Negative Radicals / Acidic Radicals
1)	1)
2)	2)

.....

C. ORGANIC CHEMISTRY

a) Organic Estimations

22. Estimation of acetone

Aim : To estimate the amount of acetone in the given solution by iodometric method.

Apparatus: Burette, pipette, conical flask, 100 ml measuring flask, beakers etc.

Chemicals: Acetone solution (Given in 100 ml measuring flask), 0.1 N (approx.) iodine solution, 0.1 N Na₂S₂O₃ solution, 1N KOH solution, 2N HCl, fresh starch solution

Procedure:

Part-I: Back Titration

- 1. Dilute the given solution of acetone in 100 ml measuring flask up to mark carefully, with distilled water and shake well.
- 2. Pipette out 10 ml of this diluted solution in a stopper bottle. Add 25 ml 1 N KOH solution by common burette and 25 ml 0.1 N (approx.) iodine solution by pipette.
- 3. Shake well and keep it for 15 minutes (shake the flask occasionally).
- 4. Add 25 ml, 2N HCl solution (2 T.T.) by measuring cylinder (to liberate free I₂).
- 5. Shake well and titrate liberated I_2 immediately against 0.1N Na₂S₂O₃ solution by using starch (1 ml) as an indicator.
- 6. The end point is blue to colourless (white precipitate). Take three accurate readings. Say the C.B.R. as Y ml.

Part-II: Blank Titration: Standardization of Iodine

- 1. Pipette out 25 ml of 0.1 N (approx.) Iodine solution in a conical flask.
- 2. Titrate this against $0.1N \text{ Na}_2S_2O_3$ solution by using Starch (1 ml) as an indicator.
- 3. The end point is blue to colourless. Take three accurate readings Say the C.B.R. as X ml. Note: Add starch when solution becomes pale yellow (i.e. near the end point)

Reactions :

1.	6KOH	+	3 I ₂	\rightarrow	3 KI	$+ KOI + 3H_2O.$
2.	CH ₃ COCH	3 +	3KOI	\rightarrow	CH ₃ CO	CI ₃ + 3KOH
3.	CH ₃ COCI ₃	+	KOH	\rightarrow	CH ₃ CO	$OK + CHI_3$
4.	KI+KOI (u	nused)	+2HCl	\rightarrow	2KCI	$+ H_2O + I_2$
5.	I ₂ (excess)	+2Na	$a_2S_2O_3$	\rightarrow	2NaI	+ $Na_2S_4O_6$

Observations and Observation table:

Part-I: Back Titration					
Observations:	Observation Table :				
1. In Burette : 0.1 N Na ₂ S ₂ O ₃ sol ⁿ	Burette Level	Buret	te Readi	ng in ml	C.B.R.
2 By pipette \cdot 10 ml acatona sol ⁿ + 25		Ι	II	III	
2. By pipette : 10 lin actione sol $+25$ ml iodine sol ⁿ $+25$ ml KOH sol ⁿ	Final Level				
3. Indicator : Starch (1 ml)	Initial Level				Y=ml
4. End point : Blue to Colourless	Difference				

Observations:	Observation Ta	ble:			
1. In Burette : $0.1N Na_2S_2O_3 sol^n$	Burette Level Burette F		te Readi	ng in ml	C.B.R.
2. By pipette : 25 ml iodine sol ⁿ		Ι	II	III	
3. Indicator : Starch (1 ml)	Final Level				
4. End point : Blue to Colourless	Initial Level				X=m
	Difference				

Calculations :

- 1. Back Titration Reading = Y = ----- ml
- 2. Blank Titration Reading = X = ----- ml
- 3. X Y = Z = ----- ml

1. Amount of I₂ consumed by the given Acetone solution

i.e. Z ml is the amount of I₂, in terms of $Na_2S_2O_3$ consumed by 10 ml dil. acetone solⁿ

 \therefore 100 ml diluted or for given solution requires = Z x 10 ml = ml acetone solⁿ

2. Amount of acetone in the given solution

From chemical reactions we get

6KOH \equiv $3 I_2$ \equiv 3KOI \equiv CH₃COCH₃ i.e. $3I_2$ 6I \equiv $\equiv 6M Na_2S_2O_3 \equiv$ 1M acetone \equiv 58 g acetone i.e. 6 KOH 58 g acetone \equiv ·. $6000 \text{ ml } 1 \text{ N } \text{Na}_2\text{S}_2\text{O}_3 \equiv$ 58 g acetone i.e. $60,000 \text{ml} \ 0.1 \text{ N} \text{ Na}_2 \text{S}_2 \text{O}_3 \equiv 58 \text{ g of acetone}$ \therefore Z ml of 0.1 N Na₂ S₂O₃ = 58 x Z g of acetone 60.000 i.e. A = ----- g of acetone present in 10 ml of diluted solution \therefore Amount of acetone present in 100 ml in given solution = A x 10 = ----- g

i.e = B =-----g

Results:

1. Amount of I_2 consumed in terms of 0.1 N NaS ₂ O ₃ solution by the given acetone solution	= Z x 10	= ml
2. Amount of acetone in the given solution	= B = g	= x 10 ⁻³ kg

23. Estimation of Ester (Ethyl benzoate)

- **Aim** : To estimate the amount of ethyl benzoate in the given solution.
- Apparatus : Burette, pipette, conical flask, 250 ml measuring flask, round / flat bottom flask (R. B. flask), water condenser etc
- **Chemicals :** Ethyl benzoate solution (Given in flat bottom flask), 0.1 N HCl, 1N (approx.) KOH solution, phenolphthalein indicator

Procedure :

Part-I: Back Titration

- 1. To the given solution of ethyl benzoate in R.B. flask, add carefully 25 ml KOH solution by common burette.
- 2. Add 2-3 pieces of porcelain.
- 3. Heat the reaction mixture on water bath using **water condenser** for one and half hour.
- 4. Cool the reaction mixture and transfer the contents to 250 ml flask with washing and dilute it up to mark with distilled water and shake well.
- 5. Pipette out 25 ml of this diluted solution and titrate it against 0.1 N HCl solution using phenolphthalein as an indicator.
- 6. The end point is pink to colourless. Take three accurate readings. Find out C.B.R. & say it as Y ml.

Part-II: Blank Titration

- 1. From burette, take 25 ml of 1 N (approx.) KOH solution in a volumetric flask.
- 2. Dilute it up to mark with distilled water and shake well.
- 3. Titrate 25 ml of this diluted KOH solution against 0.1 N HCl solution using Phenolphthalein as an indicator. 4) The end point is pink to colourless. Take three accurate readings. Say the C.B.R. as X ml.

Reactions:

1. $C_6H_5COOC_2H_5 + KOH \xrightarrow{Hydrolysis} C_6H_5COOK + C_2H_5OH$ 2. $KOH + HCl \xrightarrow{Neutralization} KCl + H_2O$

Observations & Observation table:

Part-I (Back Titration)					
Observations:	Observation T	able :			
1. In Burette : 0.1N HCl solution	Burette	Burette	e Readin	g in ml	C.B.R.
2. By pipette : 25 mi difute reaction	Level	Ι	II	III	
	Final Level				
3. Indicator : Phenolphthalein	Initial Level				Y= ml
4. End point : Pink to colourless	Difference				

Part-II (Blank Titration)					
Observations:	Observation Ta	able :			
1. In Burette : 0.1N HCl solution	Burette	Burett	e Readin	g in ml	C.B.R.
2. By pipette : 25 ml dil. KOH	Level	Ι	II	III	
sol ⁿ	Final Level				
3. Indicator : Phenolphthalein	Initial Level				X= ml
4. End point : :Pink to Colourless	Difference				

Calculations:

- 1. Blank Titration Reading = X = ----- ml
 - 2. Back Titration Reading = Y = ----- ml

3. X-Y = Z = -----ml

1. Amout of KOH solution consumed during the hydrolysis of ethyl benzoate in the given solution:-

i.e. Z ml is the amount of KOH consumed, in terms of 0.1 N HCl, during hydrolysis of ethyl benzoate for 25 ml dilute solⁿ.

 \therefore For 250 ml diluted solution or for given solution = Z x 10 ml

From chemical reaction we know

	1 mole of KOH Solution	≡	1	mole of ethyl benzoate
i.e.	1000 ml of KOH Solution	≡	150	g of ethyl benzoate
	1000 ml of 1 N KOH solution	≡	150	g of ethyl benzoate
i.e. 10,	000 ml of 0.1 N KOH Solution	≡	150	g of ethyl benzoate
Nov	w 10,000 ml 0.1 N HCl Solution	≡	150	g of ethyl benzoate
∴ Z	ml of .0.1 N HCl Solution \equiv		<u>150 x 2</u> 10,00	\underline{Z} g of ethyl benzoate 0
	i.e. A ≡		g of	ethyl benzoate present in

i.e. A \equiv ------ g of ethyl benzoate present in 25 ml of diluted solution .

: Amount of ethyl benzoate present in 250 ml i.e. in the given $sol^n = A \times 10 \text{ g}$

= ----- g i.e. = B = -----g

Results:

1. Volume of 0.1 N HCl equivalents to KOH solution consumed during the hydrolysis of ethyl benzoate in the given solution.	= Z x 10	= ml
2. Amount of ethyl benzoate in the given solution	= B = g	=x 10 ⁻³ kg

24. Estimation of Ibuprofen

- **Aim** : To determine the amount of ibuprofen from given ibuprofen tablet.
- Apparatus : Burette, pipette, conical flask, 250 ml measuring flask, 100 ml measuring flask, beakers, watch glass etc.
- **Chemicals :** Given ibuprofen tablet, oxalic acid (solid), 0.1N (approx.) NaOH Solution, chloroform, phenolphthalein indicator etc.

Procedure :

Part I: Preparation of standard solution of oxalic acid

- 1. Weigh accurately 1.575 g of oxalic acid on a watch glass or glazed paper and transfer it in a beaker.
- 2. Dissolve it in minimum distilled water and transfer this solution to 250 ml measuring flask. Dilute the contents up to the mark with distilled water and shake well.

Part II: Standardization of NaOH solution

- 1. Fill the burette with 0.1N (approx.) NaOH solution.
- 2. Pipette out 25 ml 0.1N oxalic acid solution in conical flask and add phenolphthalein indicator. Titrate with NaOH solution till colour changes from colorless to faint pink. Say the C.B.R. as 'a' ml.
- 3. Calculate the normality of NaOH solution. Let the normality be 'Z' N.

Part III: Estimation of Ibuprofen

- 1. Powder the given ibuprofen tablet and weigh accurately but not exactly 0.8 to 1 gm on a clean watch glass.
- 2. Transfer it to conical flask and extract it with 30 ml chloroform and filter it using Whatman paper no. 1.
- 3. Unfiltered residues of tablet are again extracted with 15 ml chloroform two times and finally wash the residue with 15 ml of chloroform. Collect the filtrate and washing into 250 m l conical flask and evaporate the filtrate to dryness by gentle heating and further it is allow to air dry.
- 4. Dissolve the residue in ethyl alcohol, transfer it carefully in 100 ml measuring flask and dilute up to mark with ethyl alcohol.
- 5. Titrate 25 ml of this diluted solution against Z N NaOH solution using phenolphthalein as an indicator.
- 6. The end point is colourless to pink. Say the C.B.R. as 'b' ml.

Reaction:

Observations & Observation table:

Part I: Preparation of standard solution of oxalic acid

Observations:

1.Weight of empty watch glass	\mathbf{M}_1	= g
2.Weight of oxalic acid	М	= g
3. Weight of watch glass + oxalic acid	$M_2 = M_1 + M$	=g

Part II: Standardization of NaOH solution

Part III: Estimation of Ibuprofen

Observations I:

1. Weight of empty watch glass	\mathbf{W}_1	=g
2. Weight of empty watch glass + ibuprofen tablet	\mathbf{W}_2	= g
3. Weight of ibuprofen tablet	$\mathbf{W} = \mathbf{W}_2 - \mathbf{W}_1$	=g

Observations II:	Observation T	able :			
1. In Burette : Z N NaOH solution		D 44	D 1'	• •	CDD
2 By pipette • 25 ml diluted ibuprofen	Burette	Burette	e Readin	ig in ml	С.В.К.
z. By pipette · 25 ini difficient tablet solution	Level	Ι	II	III	
tablet solution	Final Level				
3. Indicator : Phenolphthalein					-
1 End point · Colourless to Pink	Initial Level				Y=
4. End point : Colouriess to Fink	Difference				ml

Calculations:

1. Normaility of NaOH

Oxalic acid		NaOH
N_1V_1	=	N_2V_2
0.1 x 25	=	N ₂ x X

Observations:	Observation Table :				
1. In Burette : NaOH solution	Burette	Burett	e Readi	ng in ml	C.B.R.
2. By pipette : 25 ml 0.1N Oxalic	Level	Ι	II	III	
acid solution	Final Level				
3. Indicator : Phenolphthalein	Initial Level				X= ml
4. End point : Colourless to Pink	Difference				
•	Difference				

$$N_2 = \frac{0.1 X 25}{X}$$

i.e. $N_2 = Z = ----N$

Thus exact normality of NaOH = Z = ---- N

2. Amount of ibuprofen in given tablet

From chemical reaction we know				
1 Mole of NaOH solution \equiv 1 mole of ibuprofen				
$1000 \text{ ml of } 1\text{M} \equiv 206 \text{ g}$				
\therefore Y ml of Z N NaOH Solution = <u>Y x Z x 206</u> g of ibuprofen				
1,000 x 1				
i.e A \equiv g of ibuprofen				
Now 25 ml of diluted ibuprofen tablet $= A$ g of ibuprofen				
\therefore 100 ml of ibuprofen tablet solution contain = A x 4 = g of ibuprofen				
i.e. $B = g$ of ibuprofen				
2. Percentage of ibuprofen in given tablet:				
Weight of ibuprofen tablet $= W =g$				

 $\therefore W g \text{ of ibuprofen tablet} = B g \text{ ibuprofen}$ $\therefore 100 g \text{ of ibuprofen tablet} = \frac{100 \text{ x B}}{W} \% \text{ ibuprofen}$ Wi.e. C = -----% ibuprofen

i.e. Percentage of ibuprofen in given tablet C = -----% ibuprofen

Results:

1. Exact normality of NaOH solution	= Z = N	
2. Amount of ibuprofen in the given tablet	= B = g	= x 10 ⁻³ kg
3. Percentage of ibuprofen in given tablet	= C =%	

b) Organic Preparations

25. Preparation of m-Dinitrobenzene

Aim : Preparation of m-dinitrobenzene from given amount of nitrobenzene

Apparatus : Flat bottom flask, air condenser, water bath, beakers, measuring cylinder

Chemicals : Sodium nitrate (powder), conc. H₂SO₄, nitrobenzene (given), ethyl alcohol

Procedure :

- 1. Weigh 8 g sodium nitrate (powder) and place in a clean and dry flat bottom flask.
- 2. Add to it 13 ml conc. H₂SO₄ in a small portions with constant stirring & cool the flask and keep it in water bath.
- 3. Add given nitrobenzene (4/5/6 ml) to the reaction mixture in a small portion with constant stirring.
- 4. Fit up air condenser and heat the flask in a boiling water bath for one hour.
- 5. After completion of reaction, pour the reaction mixture on a crushed ice in a 400 ml beaker with constant stirring, wash the flask one or two times with cold water and transfer reaction mixture completely to beaker. Here yellow solid separates out.
- 6. Filter the product on a buckner funnel & wash with cold water. Dry and weigh the product.
- 7. Recrystallise about 1 g of the product from ethyl alcohol. Dry and determine its M.P.
- 8. **Method of Recrystalisation:** In a big test tube, add about 1 g crude product and half test tube ethyl alcohol. Heat the test tube in a **boiling water bath** and dissolve the crude product by stirring with glass rod. Filter the hot dissolved product solution through a cotton plug in another test tube and cool it. Shining crystals of m-Dinitrobenzene separate out. Filter through ordinary filter paper and dry it.

Reaction:

Result:

1. Weight of the crude product	= g	= x 10 ⁻³ kg
2. M.P. of recrystallized product	= ⁰ C	= K

26. Preparation of Phthalimide

Aim : Preparation of Phthalimide from given amount of phthalic anhydride

Apparatus : Conical flask, sand bath, beakers, measuring cylinder, evaporating dish etc.

Chemicals : Phthalic anhydride, urea, ethyl alcohol etc.

Procedure :

- 1. Take given amount of phthalic anhydride (4/6/8 gm) and 3 g urea separately. Mix these two compounds in a clean evaporating dish.
- 2. Transfer the mixture in a clean and dry conical flask. Place funnel on that flask & heat it on a sand bath at 130-135 ^oC carefully.
- 3. The reaction begins with frothing of the mass at temperature $160 \, {}^{0}\text{C}$.
- 4. When frothing subsides, stop heating and cool the contents at room temperature
- 5. Now add two T.T. water & stir the contents with glass rod. Here yellow solid separates out.
- 6. Filter the product on a Buckner funnel and wash with cold water. Dry and weigh the product.
- 7. Recrystalize about 1g of the product from ethyl alcohol. Dry and determine its M.P.
- 8. **Method of Recrystalisation** : In a big test tube, add about 1 g crude product and half test tube ethyl alcohol . Heat the test tube in a <u>boiling water bath</u> and dissolve the crude product by stirring with glass rod. Filter the hot dissolved product solution through a cotton plug in another test tube. Cool the test tube. Shining white crystals of phthalimide separate out. Filter through ordinary filter paper and dry it.

Reactions:

Results:

1.Weight of the crude product	= g	= x 10 ⁻³ kg
2. M.P. of recrystallized product	= ⁰ C	= K

27. Preparation of p-Bromoacetanilide

Aim : Preparation of p-bromoacetanilide from given amount of acetanilide.

Apparatus : Conical flask, beakers, measuring cylinder etc.

Chemicals : Acetanilide (given), glacial acetic acid, bromine in acetic acid, ethyl alcohol etc.

Procedure :

- 1. Transfer the given acetanilide (4/6/8 gm) in conical flask and dissolve in 25 ml glacial acetic acid.
- 2. Take 20 ml Bromine in acetic acid in two T. T. and add it to reaction mixture drop wise slowly with constant stirring till slight orange color is obtained.
- 3. Place the glass funnel on the mouth of the flask and allow reaction mixture to stand at room temperature for 20 minutes.
- 4. Now pour the reaction mixture on crushed ice taken in beaker. White ppt. is obtained.
- 5. Filter the product on Buckner funnel and wash with cold water. Dry & weigh the product.
- 6. Recrystalise about 1g of the product from 50% ethyl alcohol. Dry & determine its M.P.
- 7. **Method of Recrystalisation :** In a big test tube, add about 1 g crude product and half test tube 50% ethyl alcohol. Heat the test tube in a **boiling water bath** and dissolve the crude product by stirring with glass rod. Filter the hot dissolved product solution through a cotton plug in another test tube. Cool the test tube. Yellow crystals of p-Bromoacetanilide separate out. Filter through filter paper and dry it.

Reactions:

Results:

1. Weight of the crude product	= g	= x 10 ⁻³ kg
2. M.P. of recrystallized product	= ⁰ C	= K

28. Preparation of Acetanilide

Aim : Preparation of acetanilide from given amount of aniline

Apparatus : Flat bottom flask, air condenser, measuring cylinder, sand bath, funnel etc

Chemicals : Aniline, glacial acetic acid, ZnCl₂ (anhydrous), Zn dust, ethyl alcohol

Procedure :

- 1. To the given volume of aniline (8 / 10 / 12 ml) in flat bottom flask or conical flask, add 10 ml glacial acetic acid, 1 g ZnCl₂ (anhydrous) and pinch of Zn dust.
- 2. Fit up air condenser to the flask and heat the flask on sand bath for two hours.

- 3. After completion of reaction, pour the reaction mixture on crushed ice taken in beaker with vigorous stirring with glass road. White precipitate of acetanilide is obtained.
- 4. Filter the product on a buckner funnel & wash with cold water. Dry and weigh the product.
- 5. Recrystalise about 2g of the product from hot water. Dry and determine its M.P.
- 6. **Method of Recrystalisation:** Place about 1 g crude product in a big test tube and add about 10 ml distilled water. Heat test tube on wire gauze carefully till most of the product dissolves in it. Filter this hot solution through cotton plug. Collect the filtrate in another test tube. Cool the filtrate in a water bath. White shining crystals of acetanilide separate out. Filter through filter paper and dry it.

Reactions:

Results:

1. Weight of the crude product	= g	= x 10 ⁻³ kg
2. M.P. of recrystallized product	= ⁰ C	= K

Organic Qualitative Analysis

29 Identification of an Organic compound

Aim: To identify the organic compound, given in a container marked (A) bearing your table number.

- **Note:** i) M.P. / B.P. of the compound should be detected before identification and the examiner's signature should be obtained .
 - ii) Wherever possible special tests should be shown to the examiner.
 - iii) Reactions for positive tests are expected.

Organic Compound No. -----

A) Physical Constant:

M.P. / B.P. of the Organic compound = ----- ^{0}C = ------ K

B) Preliminary test:

Sr.	Test	Observation	Inference
1 NO.	Colour	i) White solid	Phthalic acid succinic acid aspirin
1	Colour	i) white solid	urea acetalnilide naphthalene
			anthracene may be present
		ii) Colourless liquid	CCl4 bromobenzene methyl acetate
		ny colouriess inquite	acetophenone ethyl methyl ketone
			may be present
		iii) Dark brown solid	α - napthol may be present
		iv) Yellow coloured solid	o or p-nitrophenol, o/m/p-nitroaniline
			may be present .
		v) Yellow coloured liquid	Nitrobenzene may be present.
		vi) Yellow brown liquid	N, N-dimethyl aniline may be present
2	Odour	i) Pleasant	CCl ₄ , ethyl methyl ketone,
			acetophenone may be present
		ii) Pungent and irritating	Bromobenzene may be present
		iii) Fruity smell	Methyl acetate may be present
		iv) Fishy smell	N, N-dimethyl aniline may be present
		v) Odour of bitter almond	Nitrobenzene may be present
		vi) Moth ball like smell	Naphthalene may be present
		vii) Odourless	Sumlinic, Phthalic, salicylic acid,
			aspirin, o or p- nitrophenol, o/m/p-
			nitroaniline, anthracene etc. may be
			present
		viii) Phenolic	α - napthol may be present
3	Cu foil test:	i) Sooty flame	Compound is aromatic
	Heat small amount	ii)Non –sooty flame	Compound is aliphatic
	of compound on cu	iii) Green flame after the	Compound containing halogen is
	1011 OF OH glass 100	initial sooty flame has	present (exception –urea)
		vanished	
4	KMnO ₄ Test :	i) Decolourisation of	Unsaturated compound is present
	Org. compd + dil.	KMnO ₄ solution	
	KMnO ₄ solution	ii) No Decolourisation of	Saturated compound is present
	(faint violet	KMnO ₄ solution	
	coloured)		

C) Type of the Organic Compound:

Sr. No.	Test	Observation	Inference
	Organic compound +	i) Soluble	Water soluble compound is
1	water, shake well		present

	i) Insoluble	Water insoluble compound is
		present

Type of the Water Soluble Organic compound

1	Org. comp .+ water, shake	Compound dissolves	Original solution (O.S.)
	well	completely	Use O.S. for further tests
2	Test O.S. with blue litmus	Blue litmus paper turns	Water soluble acid is present
	paper	red	
3	Test O.S. with red litmus	Red litmus paper turns	Water soluble base is present
	paper	blue	
4	O.S. neutral FeCl ₃	Violet colour	Water soluble phenol is
	solution		present
5	All above tests are absent. Therefore compound is neutral.		

Type of the Water insoluble Organic compound

1	a) Org.comp.+NaHCO ₃	Effervescence of CO ₂	Acid is present.
	sol ⁿ shake well & filter		
	b) Filtrate + 1:1 HCl	White ppt.	Acid is confirmed
2	a) Org. comp.+ 10% NaOH		
	sol ⁿ , shake well & filter	Compound dissolves	Phenol is present
	b) Filtrate + 1:1 HCl	White ppt. or yellow ppt.	Phenol is conformed
3	a)Org.comp.+1:1 HCl		
	shake well and rub with	Compound dissolves	Base is present
	glass rod and filter		
	b) filter + 30% NaOH	Yellow ppt.	Base is conformed
	solution		
4	All above tests are absent. Therefore compound is neutral.		

Type of the organic compound is

D) Detection of Elements (Lassaigne's Test)

Take a dry piece of freshly cut sodium (Na) metal in a fusion tube. Heat the tube gently to melt the Na metal. Cool and add little amount of organic compound to it. For liquid compound use 5 ml pipette for dropping the liquid in fusion tube. Heat it first slowly and then strongly until tube is red hot. Drop it while red hot in about 15ml distilled water (about 1 t.t.) taken in an evaporating dish. Repeat the procedure 3 to 4 times.

Boil contents of evaporating dish for 5 minute (till half of the distilled water in evaporating dish evaporates) and filter through ordinary filter paper in a large test tube. This filtrate is known as sodium extract. Use this filtrate /extract for detection of elements.

Sr.	Test	Observation	Inference
No.			

1	Test for Nitrogen 1ml sodium extract + 2ml freshly prepared FeSO ₄ Sol ⁿ + 1 drop NaOH , boil well and cool then add excess conc. HCl Reactions :	Blue ppt. or green colouration	Nitrogen (N) is present
	Na + C +	N — NaCN	
	2 NaCN + Fe	$SO_4 \longrightarrow Fe(CN)_2 +$	- Na₂SO₄
	Fe(CN) ₂ + 4 Na	CN — → Na₄ [Fe(CN	2 4)e]
	3 Na ₄ [Fe(CN) ₆] + 4 F	FeCl ₃ \xrightarrow{HCl} Fe ₄ [Fe(CN) Ferric ferrocyanide	$_{6}]_{3}$ + 12 NaCl (prussian blue)
2	Test for sulphur 2ml sodium extract + 1drop NaOH + few drops of sodium nitroprusside sol ⁿ	Purple or violet colour	Sulphur (S) is present
	Reactions:		
	$2 \text{ Na} + \text{ s} \longrightarrow \text{Na}_2 \text{S}$		
	$Na_2S + Na_2[Fe(CN)_5 NO] \longrightarrow Na_4[Fe(CN)_5 NOS]$ Sodium nitroprusside purple colour		
3	Test for Halogens (<u>Precaution</u> :Wash the T.T. with distilled water twice) 1 ml sodium extract + two drops of conc. HNO ₃ boil and cool well + AgNO ₃ solution	White or yellow ppt.	Halogen is present
	If above test is positive, carry out	following test	
	1ml sodium extract + CHCl ₃ or CCl ₄ + chlorine water, shake	i) colourless lower layer	Cl is present
	well and observe colour of lower layer	ii) pale brown or yellow layer	Br is present
	Reactions :		
	Na + X \longrightarrow NaX (X = Cl, Br or l) Sodium halide NaX + AgNO ₃ \longrightarrow AgX \downarrow + NaNO ₃ Silver halide		

The given organic compound contains the C, H, (O) ------ &----- elements.

E) Detection of functional group & Identification of Organic Compound I) Acids having elements C, H & (O)

Sr.	Test	Observation	Inference
No.			
1	Org. comp. + saturated	Slow effervescence of	Acid is present
	NaHCO ₃ solution.	CO_2	(-COOH)
	Reactions:		
	$R - COOH + NaHCO_3$	R-COONa	$+ H_2O + CO_2\uparrow$
2	Org .comp. + distilled water,	a) comp. is soluble	Succinic acid is present
	shake well	b) comp. is insoluble	Salicylic acid, phthalic
			acid, aspirin etc. is present

Preparation of neutral solution: In a 250 ml beaker take about 1 g of organic compound. Add to it about half T.T. dist. water, heat if necessary + 1 or 2 drops of phenolphthalein + dil . NaOH solution till pink colour just develops + dil. HCl till pink colour just disappears. Add slight excess of dilute ammonia solution and boil to remove the excess ammonia. Test with moist turmeric paper. Turmeric paper should not turn brown. If solution is faint pink coloured, add one drop of dil. HCl, it becomes colourless. Resulting solution is neutral solution.

Sr. No.	Test	Observation	Inference
3	Neutral solution + FeCl ₃ solution	i) violet colour in cold	Salicylic acid or aspirin
		disappearing by dil. HCl	is present
		ii) reddish brown or buff	Succinic acid or
		ppt. soluble in dil. HCl	phthalic acid is present
4	Neutral solution + CaCl ₂ solution	white ppt. on boiling,	Succinic acid is
		soluble in acetic acid	present
	C.T. for Salicylic acid		
	Org. comp. + water shake well then	violet colour	Salicylic acid is
	add FeCl ₃ solution		confirmed
	C.T. for Aspirin (acetyl salicylic ac	id)	
	i) Org. comp.+ dil. HCl, boil then	violet colour	aspirin is confirmed
	add neutral FeCl ₃ solution		
	ii) Org. comp. + water shake well	No violet colour	aspirin is confirmed
	then add FeCl ₃ solution		
	C.T. for Succinic acid		
	i) Org .comp .+ water shake well +	buff ppt.	Succinic acid is
	dil. HCl + neutral FeCl ₃ solution		confirmed
	ii) In a dry T.T. take Org. comp. + double amount of resorcinol + 1ml conc. H_2SO_4 heat gently till mixture	X7 11	a · · · · · ·
	becomes red brown colour, cool well, pour it in water taken in a beaker. Then add excess of NaOH solution	Yellow green fluorescence	succinic acid is confirmed
		1	1

C.T. for Phthalic acid		
In a dry T.T. take Org .comp. + double amount of resorcinol +1ml conc. H ₂ SO ₄ , Heat gently till mixture attains red brown colour cool well .Pour it in water taken in a beaker. Then add excess of NaOH solution	Orange green fluorescence	Phthalic acid is confirmed

II) Phenols

a) Phenols having elements C, H & (O)

1	Org. comp .+ water & boil, then	White ppt. slowly	Phenol is present
	add FeCl ₃ solution in excess	changes to violet	(Ar-OH)
	Reactions :		
	$6Ar-OH + FeCl_3$ —	$\longrightarrow [(Ar-O)_6 Fe]^{3-} + 3HO$	Cl + 3H+
		(complex ion, viole	et colour)
	C.T. for α – naphthol		
	Org .comp.+ NaOH shake well +	Blue colouration	α -naphthol is
	CCl ₄ + Cu fillings & warm		confirmed

b) Phenols having elements C,H,(O) & N (Nitrophenols)

	Test for NO ₂ group by neutral		
1	reduction		
	Org.comp. + pinch of zinc dust +	Black or grey ppt.	NO ₂ group is present
	50% ethyl alcohol + $CaCl_2$ solution		
	Add 1or 2 pieces of porcelain. Heat		
	to vigorous boiling and filter in to		
	Tollen's reagent		

	Preparation of Tollen's reagent : 5ml AgNO ₃ solution + 1 drop NaOH +			
	NH ₄ OH solution till the ppt. formed just dissolves.			
	Reactions :			
	Ar-NO $\xrightarrow{Zn / C_2H_5OH}$ Ar-NHOH Reduction			
	Ar-NHOH + 2 Ag (NH ₃) ₂ O Tollen's reage	H Ar-NO + 2 Ag ↓ 4 nt	- 4 NH ₃ ∮ + 2 H ₂ O	
2	Org. comp. + NaOH shake well	Compound dissolves	Phenolic – OH group is	
			present	
	Reactions:			
	$Ar-OH + NaOH \longrightarrow Ar-ONa + H_2O$			
	Sodium phenoxide (soluble)			
3	Observe colour of the Org.	Bright / dark yellow	o- Nitrophenol	
	comp.	Pale yellow / colourless	p- Nitrophenol	

C.T.for o- Nitrophenol				
i) Org. comp. + 60% HNO ₃ warm gently	Compound dissolves with evolution of brown gas and reappears again on cooling as 2,4 dinitrophenol	o- Nitrophenol is confirmed		
ii) Org .comp.+ NaOH	Orange red colour	o- Nitrophenol is		
		confirmed		
C.T. for p- Nitrophenol				
i) Org. comp. + bromine in	Dark brown coloured solid	p- Nitrophenol is		
acetic acid, warm gently	or solution	confirmed		
ii) Org. comp. + NaOH	Yellow colour	p- Nitrophenol is		
		confirmed		

III) Base or Amines having elements C, H, (O) and N

Distinction between primary, secondary and tertiary amines

Sr.	Test	Observation	Inference	
No.				
1	Org. comp. + 3 times conc. HCl	i) yellow oil or solid	Secondary amine (>N-H)	
	+ few drops of distilled water,	separates	is present	
	cool thoroughly in ice cold water	ii) red colour and on	Tertiary amine (>N-) is	
	+ few drops of NaNO ₂ solution	adding NaOH green solid	present	
	(Test tube 1)	is obtained	N, N dimethyl aniline is	
			present	
2	If observations (i) & ii) are	Orange dye stuff	Primary amine i.e.o, m or	
	absent, To the solution of β –		p-Nitroaniline is present	
	napthol in NaOH, add 1 ml of		(Functional group Ar-	
	solution from test tube 1.		NH ₂)	
	Reactions :			
	Ar-NH ₂ $\xrightarrow{\text{NaNO}_2 + \text{HCI}}$ Ar-N=N-CI + NaCI + 2 H ₂ O Low Temp. Benzene diazonium chloride			

a) Pri	a) Primary amines				
1	Colour of the organic compound	Yellow coloured solid	o, m or p- nitroaniline		
			is present		
	Tests for o, m or p-nitro anilines				
2	Diazotization test				
	Use two test tubes (T.T.) for this test				
	<u>First T.T:</u> Org comp. $+ 3$ times conc.				
	HCl cool and dilute with water +	Orange dye stuff	Primary amine		
	NaNO ₂ sol ⁿ , cool in ice cold water.		(Ar-NH ₂) group is		
	Second T.T:		present		

	β -napthol + NaOH, shake well as	nd			
	cool in ice cold water.				
	Add about 1ml sol ⁿ from first T.T	`. to			
	second T.T.				
3	Neutral Test for NO ₂ group				
	Org. comp.+ pinch of Zn dust + 5	50%			
	ethyl alcohol + $CaCl_2 sol^n$ + few		Black or grey ppt.		NO ₂ group is present
	pieces of porcelain, heat to vigoro	ous			
	boiling and filter in to Tollen's				
	reagent				
4	Distinction between o, m or p-				
	Nitroaniline is done from their m.	р.	Practical m. p. of giv	en	∴ nitro aniline
	Theoretical m. p. of :		nitro aniline		is present and
	o-Nitroaniline is 70 ⁰ C		is ⁰ C		confirmed
	m-Nitroaniline is 114 ⁰ C				
	p-Nitroaniline is 147 ⁰ C				
b) Ter	tiary amines				
1	Org .comp.+ 3 times conc. HCl	Red	colour &on adding	Ter	tiary amine i.e.
	few drops of distilled water –	NaO	H green solid is	N , I	N-dimethyl aniline is
	cool thoroughly in ice cold	obtai	ned	pre	sent
	water + few drops of NaNO ₂				
	solution				
	C.T. for N,N-dimethyl aniline				
	2 ml saturated sol ⁿ of picric acid	Yello	ow ppt.	N,]	N-dimethyl aniline is
	in ethyl alcohol + few drops of			con	firmed
	Org. comp , shake vigorously				

IV) Neutral Compound having C, H &(O) elements

a) Este	a) Esters (Liquid only)				
1	Use two T.T. for this test <u>First T.T</u> 1ml NaOH + 1 drop of phenolphthalein – pink colour obtained, disappear after some time. Again add one drop of phenolphthalein-pink colour appears. Wait for some time. If pink colour disappears, again add one drop of phenolphthalein. By this way stabilize the pink colour. Now add water so that faint pink coloured solution is obtained. <u>Second T.T</u> In a second T.T. take organic liquid and add faint pink coloured solution from T.T. No.1, shake well. If necessary heat	Pink colour disappears	Ester i.e. methyl acetate is present and confirmed R OR functional group		
	If given organic compound is solid , mention the ester test as follows –				
	All esters are liquids but given compound is solid		Ester is absent		

b) Ket	tones – (Liquid only)		
1	Org. comp. + few drops of sodium nitroprusside + NaOH solution	Red colour	Methyl ketone group (CH ₃ CO-R) is present .i.e. ethyl methyl ketone and acetophenone is present
	C. T. for Ethyl methyl ketone		
	Org. liquid + solid	Violet colour which	Ethyl methyl ketone is
	m-dinitrobenzene, shake well +	fades slowly	confirmed
	NaOH in excess		
	C. T. for acetophenone		
	Org .liquid + few drops of NaOH +	Wine red colour	Acetophenone is
	sodium nitroprusside	changes to blue	confirmed
	To the above solution add acetic		CH ₃ CO-Ph
	acid		
	If given organic compound is se	pild, mention the ketone	test as follows
2	All ketones are liquids , but given		Ketone is absent
	compound is solid		(-CO-)
c) Hy	drocarbons		
1	Org. comp. does not show tests of acid, phenol, ester & ketones.		Compound is hydrocarbon i.e. naphthalene,
	C. T. for Norhthologo		anumacene is present
	i) Org comp is white solid It is		Nanhthalana is present &
	insoluble in water. It has small of		confirmed
	moth balls and it is aromatic in		commed
	nature		
	ii) Use two dry T T for this test		
	First T.T Org comp. $+ 2$ ml		
	benzene and shake well	Golden vellow ppt. of	Naphthalene is confirmed
	Second T.T Picric acid + 2 ml	picrate	
	benzene (saturated solution) and	1	
	shake well.		
	Mix these two solution in a clean		
	and dry evaporating dish. Keep it for		
	5 minutes.		
	C. T. for Anthracene		Anthracene is present &
	i) Org.comp.is yellowish white		confirmed
	solid, insoluble in water .It has no		
	particular odour, it is aromatic in		
	nature.		

ii) Use two dry T.T. for this test		
<u>First T.T</u> Org. comp. + 2 ml		
benzene and shake well .	Red ppt. of picrate	Anthracene is present &
<u>Second T.T</u> Picric acid $+ 2$ ml		confirmed
benzene and shake well		
Heat these two T.T. in a water bath		
for few minutes.		
Mix these two solutions in a clean		
and dry evaporating dish. keep it for		
5 minutes.		

V) Neutral Compound having C, H, (O) & N elements

a) Nit	rohydrocarbons :			
1	Org. comp. pinch of Zn dust +50% ethyl alcohol + CaCl ₂ solution. Add 1 or 2 pieces of porcelain .Heat to vigorous boiling and filter in to Tollen's reagent.	Bla	ack or gray ppt	Nitrohydrocarbon i.e. Nitrobenzene is present (functional group –NO ₂)
	Preparation of Tollen's reagent: refer	. pre	vious procedure.	
	C.T. for Nitrobenzene			
	Organic liquid + conc. HCl snCl2 + 1 or 2 pieces of porcelain. Heat	Fis	hy smell of aniline	Nitrobenzene is confirmed
b) Am	ides			
1	Org. comp. + NaOH, boil	Eve turi bro	olution of NH ₃ gas ning turmeric paper own.	Amide group (-CONH ₂) is present i.e. urea is present.
	Reaction: RCONH ₂ + NaOH	·	△ R-COO	Na + NH₃↑
	C. T. for urea			
	Heat small amount of org. comp. in a dry test tube. Compound sublimes an NH ₃ is evolved. Cool the T.T. and dissolve the residue in 2 ml distilled water + 1 drop of CuSO ₄ + 2 ml NaO	nd nd	Violet colour	Urea is confirmed

c) Ani	lide		
1	Use two dry T.T. for this test <u>First T.T</u> Org .comp. + conc. HCl + 1 or 2 pieces of porcelain boil for minutes & cool well + few drops water +NaNO ₂ solution, cool in ice co water <u>Second T.T</u> β -napthol in NaC solution, shake well and cool in ice co water. Add about 1ml solution from fi T.T. to second T.T.	 5 of old Orange dye stuff OH old rst 	Anilide group (-NHCOCH ₃) is present i.e. Acetanilide is present
	Reactions- Ar-NH-COCH ₃ + H ₂ O Ar-NH ₂ $\frac{\text{NaNO}_2 + \text{HCI}}{\text{Low Temp.}}$	HCI Hydrolysis Ar-NH₂ → Ar-N=N-CI + Na Benzene diazonium chlor	+ CH_3COOH aCl + 2 H_2O ide
	C. T. for Acetanilide Take org. comp. in dry T.T. + conc. H_2SO_4 stir with glass rod +	Red colour immediately changes	Acetanilide confirmed.

VI) Neutral Compound having C, H & (O) and halogens elements

1	Org. liquid + NaOH solution,	i) white or yellow ppt.	Aliphatic halide,
	boil well + about 1ml dil HNO ₃		CCl ₄ is present
	and add AgNO ₃ solution	ii) No ppt	Aromatic halide
			i.e. bromobenzene
			is present
	C. T. for CCl ₄		
	i) 1ml org. liquid + 2ml		
	alcoholic KOH solution + 2ml	Disagreeable odour of	CCl ₄ is confirmed
	aniline, warm carefully .	carbylamine	
	Note: To the reaction mixture		
	conc. HCl should be added		
	before it is poured into sink		
	ii) Org. liquid + Cu fillings +	Blue colour	CCl ₄ is confirmed
	solution of α –naphthol in		
	NaOH, warm		
	C.T. for Bromobenzene		
	i) Sodium extract+ CCl ₄ +Cl ₂	Lower layer is yellow or	Bromobenzene is
	water in excess, shake well	yellowish brown	confirmed

ii) In a dry T.T. take 1ml conc. HNO ₃ + conc. $H_2SO_4 + 0.5$ ml org. liquid +1 or 2 pieces of porcelain. Heat for 1 min and	Yellow ppt.	Bromobenzene is confirmed
porcelain. Heat for 1 min and		committed
pour in to water		

F) Summery of Organic Compound

1.	State	Solid / Liquid
2.	Nature	Aliphatic /Aromatic
3.	Туре	Acid / Phenol / Base / Neutral
4.	Elements	С, Н, (О) &
5.	Functional group / groups	
6.	Physical constant :	a) Theoretical M.P. / B.P. = 0 C =K
		b) Practical M.P. / B.P. = ${}^{0}C$ = K

Therefore given organic compound is ------

G) Results:

Name of Organic Compound	Structural formula	M.P / B.P.

H] Consultation with Literature:

Sr. No	Name of the organic compound & its molecular formula	Structural formula	M.P. or B.P.	Functional group	
	I) Acids having element C, H & (O)				
1	Succinic acid C ₄ H ₆ O ₄	CH ₂ -COOH CH ₂ -COOH	M.P. 183 ⁰ C (461 K)	-COOH	
2	Phthalic acid C ₈ H ₆ O ₄	СООН	M.P. 193 ⁰ C (466 K)	-COOH	
68					

3	Salicylic acid	СООН	M.P. 158 ^o C	-COOH		
	C7H8O4	ОН	(431K)	Ar–OH		
	II)Phenols					
	a) Phenols having ele	ment C, H &(O)				
4	α – naphthol C ₁₀ H ₇ OH	OH	M.P. 94 ⁰ C (367 K)	Phenolic –OH		
	b)Phenols having ele	ement C, H, (O)& N (N	litro phenols)			
5	o-Nitrophenol OH (C ₆ H ₄)NO ₂	OH NO ₂	M.P. 45 ^o C (318 K)	Phenolic- OH –NO2		
6	p-Nitrophenol OH (C ₆ H ₄)NO ₂	OH NO ₂	M.P. 114 ⁰ C (387 K)	Phenolic- OH –NO ₂		
	III) Base or Amines having elements C, H, (O) and N					
7	o-Nitroaniline NH ₂ (C ₆ H ₄)NO ₂	NH ₂ NO ₂	M.P. 71 ⁰ C (344 K)	Primary amine (Ar-NH ₂) and -NO ₂		
8	m-Nitroaniline NH ₂ (C ₆ H ₄)NO ₂	NH ₂ NO ₂	M.P. 114 ⁰ C (387 K)	Primary amine (Ar-NH ₂)and –NO ₂ group		
9	p-Nitroaniline NH ₂ (C ₆ H ₄)NO ₂	NH ₂ NO ₂	M.P. 147 ⁰ C (420 K)	Primary amine (Ar-NH ₂)and –NO ₂ group		

10	N,N dimethyl aniline CH ₆ N(CH ₃) ₂	CH ₃ N CH ₃	B.P. 193 ⁰ C (466 K)	Tertiary amine group Ph-N-R		
	IV) Neutral Compound having C, H, & (O) elements					
	i) Esters					

11	Methyl acetate $C_2H_2O_2$	Ŷ	B.P. 57 ⁰ C (330 K)	Ester group	
	C311602	CH ₃ [—] C—OCH ₃	(550 K)		
	ii) Ketones				
12	Ethyl methyl ketone	Q	B.P. 80°C	Ketone group	
	C4H8O	$CH_3^{II}C^{II}-CH_2^{-}CH_3^{-}$	(330 K)	R-C-R'	
13	Acetophenone	Ŷ		Ketone group	
	C ₆ H ₅ .COCH ₃	C-CH ₃	M.P. 202 °C (475 K)		
				Ar—C—CH ₃	
	iii) Hydrocarbons		<u> </u>	1	
14	Naphthalene		M.P. 80 ⁰ C		
	$C_{10}H_8$		(353 K)	СН	
15	Anthracana		M P 217 ⁰ C		
15	$C_{14}H_{10}$		(490 K)	СН	
	V) Neutral Compour	nd having C, H, (O) & N e	lements		
		NO	Ι	1	
16	Nitrobenzene		B.P. 209 ⁰ C	- NO2	
			(482 K)	1.02	
17	Urea H ₂ N CO NH ₂	9	M.P. 132 ⁰ C	-CONH ₂ Amide group	
		$NH_2 C - NH_2$	(405 K)	r minue group	
18	Acetanilide	NHCOCH 3		-NHCOCH3	
	C ₆ H ₅ .NHCOCH ₃		M.P. 114 ^o C	Amide group	
			(307 K)		
	VI) Neutral Compound having elements C, H, & (O) and halogens				
19	Carbon	CI			
19	Carbon tetrachloride	CI CI—C—CI	B.P. 78 ⁰ C	Aliphatic-Cl	
19	Carbon tetrachloride CCl4		B.P. 78 ⁰ C (351 K)	Aliphatic-Cl	
19 20	Carbon tetrachloride CCl4 Bromobenzene C ₆ H ₅ Br	CI CI—C—CI CI Br 	B.P. 78 ⁰ C (351 K) M.P. 155 ⁰ C	Aliphatic-Cl Ar -Br	
19 20	Carbon tetrachloride CCl4 Bromobenzene C ₆ H ₅ Br		B.P. 78 ⁰ C (351 K) M.P. 155 ⁰ C (428 K)	Aliphatic-Cl Ar -Br	

SHRI SHIVAJI MAHAVIDYALAYA, BARSHI

B. Sc. PART III PRACTICAL CHART INORGANIC CHEMISTRY Department of Chemistry

Name of Student.....

......Roll No

	INDEX		_
Sr. No	Name of Experiment	Date	Page
I.	GRAVIMETRIC ESTIMATIONS[1-24]		
1.	Gravimetric Estimation of Iron		2
2.	Gravimetric Estimation of Barium		5
3	Gravimetric Estimation of Manganese		7
4.	Gravimetric Estimation of Nickel		8
II	INORGANIC PREPARATIONS[25-56]		
5.	Preparation of Potassium trioxalatoaluminate(III)		11
б.	Preparation of Tris(ethelenediamine)nickel(II) thiosulphate		12
7.	Preparation of Reinecke's salt		13
8.	Preparation of Chloropentaaminecobalt(III) chloride		14
9.	Preparation of Tris(thiourea)cuprous sulphate		15
10.	Preparation of Hexaaminenickel(II)chloride		16
	Characteristics of Inorganic preparations		17
III	TITRIMETRIC ESTIMATIONS		
	A) PERCENTAGE PURITY _[57-70]		
11.	Percentage purity of Mohr's salt		18
12.	Percentage purity of Tetraaminecopper(II) suphate		20
13.	Percentage purity of Potassiun trioxalatoaluminate(III)		22
	B)ANALYSIS OF COMMERCIAL SAMPLE [71-90]		
14.	Percentage of magnesium in talcum powder		23
15.	Amount of aluminum from potash alum		25
16.	Titrable acidity of milk / Lassi		27
17.	Chemical oxygen demand of industrial effluent		29
	C) ION EXCHANGE METHOD OF SEPERATION [91-100]		
18.	Estimation of Magnesium & Zinc by ion exchange method		31

1

S.S.M.Barsł	ni. B.Sc. III –	Inorganic Chemistry Practical Chart	
19.	Estimatio	on of Sodium by ion exchange metho	d
		I. GRAVIMETRIC ESTI	MATIONS
		1. Gravimetric Estima	tion of Iron.
Aim	:	Gravimetric estimation of Iron as F	e ₂ O ₃ from the given solution
		of ferrous ammonium sulphate, cop	oper sulphate and free
		sulphuric acid	
Chemica	ls :	1) Given sol ⁿ of F.A.S,	2) Ammonia 1:1
		3) Conc. HCl	4) Conc. HNO ₃
		5) 1% Ammonium nitrate sol ⁿ	6) H₂S gas,
		7) Distilled water.	
Apparatu	us :	i) Pipette 25 ml	ii) Beaker 250 ml/500ml
		iii) Desiccator	iv) Silica crucible
D			

Procedure :

A) Removal of Copper as CuS : -

1) Dilute the given solution up to mark (100 ml or 250 ml) with distilled water and shake well. 2) Pipette out 50 ml diluted solution (by using 25 ml pipette) in 250 ml beaker. Add to it about 100 ml distilled water with measuring cylinder and 2-3 ml of conc. HCl. 3) Boil the solution on wire gauze and pass H₂S gas to precipitate copper as CuS. (Use separate gas passing tube.) 4) Filter the solution through ordinary filter paper and wash the ppt. and beaker with hot distilled water. 5) Collect the filtrate and washing in 500ml beaker. Reject the ppt. of CuS (Do not waste single drop of filtrate). Boil off H₂S gas. Test vapors with lead acetate paper. Use this filtrate for estimation of iron.

B) Estimation of Iron.

- Precipitation: To the filtrate free from Copper add 10 ml dil. H₂SO₄ solution and 5 ml conc. HNO₃ and boil the solution. While heating add 2 g of NH₄Cl.Observe colour –Colour of solution is intense yellow.
- 7. Keep the beaker on asbestos sheet and precipitate Fe as Fe (OH)₃ by adding 1:1 ammonia solution. Add ammonia solution till distinct smell of ammonia to the solution (Check carefully).
- 8. Filtration and Washing: Filter the ppt. of Fe (OH)₃ in hot condition by using Whatman filter paper No. 41.Wash the ppt and beaker with hot 1% Ammonium nitrate solution (use small amout of solⁿ each time). Continue washing of ppt until the fresh filtrate is free from Cl⁻ and SO₄²⁻ (Test with Ag NO₃ and BaCl₂ solⁿ respectively)
- 9. Drying : Dry the ppt. on drying cone .
- **10. Ignition and weighing:** Ignite the ppt. in previously weighed crucible. Heat crucible on **blue flame** of burner for about 45 min.
- 11. Cool the crucible on tripod stand first for 10 min. and transfer it to desiccators when it cool to room temperature & weight it on Digital balance.

34

12. Again heat the crucible on blue flame for 10 min. and after cooling weigh it accurately. Repeat the procedure till constant weight is obtained. From the weight of residue obtained, find out amount of Fe and F.A.S. in the given solⁿ.

Observations:

1) Weight of empty Crucible $W_1 = \dots + W_1$	g.
2) Weight of Crucible + Residue	
On first heating (45 Min) a =g.	
On second heating (10 Min) $b = \dots g$.	
On third heating (10 Min) $c = \dots g$.	a
$\frac{1}{2} = \frac{1}{2}$	g.
3) Weight of Residue VV_2-VV_1 $VV = \dots$	g.
$1) \qquad CuSO_4 + H_2S \longrightarrow CuS\downarrow + H_2SO_4$	
$) \qquad 6FeSO_4 (NH_4)_2SO_4 + 2HNO_3 + 3H_2SO_4 \longrightarrow 3Fe_2(SO_4)_3 + 6 (NH_4)_2SO_4$	1 +
$4H_2O + 2NO$	
III) $Fe_2(SO_4)_3 + 6 NH_4OH \longrightarrow 2Fe (OH)_3 \downarrow + 3(NH_4)_2SO_4$	
iv) $2Fe(OH)_3$ $\xrightarrow{Ignition} Fe_2O_3 + 3H_2O \uparrow 1000^{\circ}C$	
Calculation:	
$Fe_2O_3 \equiv 2Fe \equiv 2 FeSO_4 .(NH_4)_2SO_4. 6H_2O$	
$159.69 \equiv 111.60 \equiv 784.26$	
$1 \equiv 0.6994 \equiv 4.911$	
Now,	
a) Quantity of Fe_2O_3 in the given solution	
50ml diluted sol ⁿ FAS = W g. of Fe ₂ O ₃ 50ml diluted sol ⁿ FAS = Wg. of Fe ₂	O ₃
100 × W	250 x W
\therefore Quantity of Fe ₂ O ₃ in 100 ml sol ⁿ = 300 \therefore Quantity of Fe ₂ O ₃ in 250 ml sol ⁿ = 500	50
$= 2 \times W \text{ g of } \text{Fe}_2 \text{O}_3 \qquad = 5 \times W \text{ g}$	of Fe ₂ O ₃
i.e. A =g of Fe ₂ O ₃ i.e. A =g	of Fe ₂ O ₃
b) Quantity of Fe in the given solution	
From eq ⁿ , 1 g of Fe ₂ O ₃ \equiv 0.6994 g of Fe	
\therefore A g of Fe ₂ O ₃ = A x 0.6994 g of Fe	
i.e. B =g of Fe	
c) Quantity of FeSO ₄ . (NH ₄) ₂ SO ₄ . 6H ₂ O:	
:. 1 g of $Fe_2O_3 = 4.911$ g of $FeSO_4$. (NH ₄) ₂ SO ₄ .6H ₂ O.	
\therefore 'A' g of Fe ₂ O ₃ = A x 4.911 g of F.A.S.	
i.e. C = g of F.A.S.	
Results :	

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart					
2.	Quantity of Fe in the given solution	B =g			
3.	Quantity of FeSO ₄ . (NH ₄) ₂ SO ₄ . $6H_2O$ in the given sol ⁿ	C =g			

2. Gravimetric Estimation of Barium

Aim	:	Gravimetric estimation of Barium as	BaSO ₄ from the given solution
		of barium chloride, ferric chloride and	d free HCI.
Chemicals	:	1) Given sol ⁿ of barium chloride	2) 2 N H ₂ SO ₄
		3) Conc. HCl	4) Conc. HNO ₃
		5) 1:1 NH ₃ solution	6) Solid NH₄Cl
		7) Distilled water.	
Apparatus	:	As Gravimetric Estimation No. 1	

Procedure:

A) Removal of IRON :

- 1. Dilute the given solution to up to mark (100ml or 250ml) with distilled water and shake well.
- Pipette out 50 ml (by using 25 ml pipette) diluted solution in 250 ml. beaker. Add to it about 2 ml of conc. HCl, about 100 ml of distilled water and about 1-2 ml of conc. HNO_{3.} Heat the solution up to boiling and add about 1g of solid NH₄Cl. Observe colour-colour of solution is intense yellow.
- Now stop heating and precipitate Fe as Fe(OH)₃ by adding 1:1 Ammonia solution. Continue addition of ammonia until distinct smell of ammonia to the solution in beaker (Check carefully).
- 4. Quickly filter the ppt. Fe(OH)₃ through ordinary filter paper in hot condition. Wash the ppt. and beaker with hot 1% ammonium nitrate or hot distilled water. Collect filtrate and washing in a 500ml beaker. Reject the ppt. of Fe(OH)₃.
- 5. Boil off excess ammonia, test vapors with turmeric paper. Use this filtrate for estimation of Barium.

B) Estimation of Barium :

- 6. **Precipitation:** To the filtrate free from ammonia. add 1 test-tube hot 2N H₂SO₄ drop by drop with constant stirring.
- 7. Digestion: Digest the ppt of BaSO₄ on sand bath for about 30 min. by covering the beaker with watch glass. Now check whether the precipitation of Barium is complete or not by adding hot 2N H₂SO₄ from side of beaker. (If precipitation is not complete add few ml of 2N H₂SO₄)

- Filtration & washing: Filter the digested ppt. of BaSO₄ through Whatman No. 42 and wash with hot distilled water. Test the fresh filtrate with AgNO₃ and BaCl₂ or Ba(NO₃)₂ solution for removal of Cl⁻ and SO₄ ²⁻ respectively.
- 9. **Drying:** Dry the ppt. on drying cone.
- 10. **Ignition and Weighing**: Ignite the ppt. of BaSO₄ in previously weighed crucible. Heat the crucible on pipe clay triangle for about 45 min strongly on blue flame.
- 11. Cool the crucible on tripod stand first for about 10 min. and then transfer in to desiccators and Weigh it on the digital balance, as a weight of Crucible + Residue.
- 12. Heat the crucible once again for 10 min. Cool and weigh again. Repeat heating, cooling and weighing till constant weight is obtained.

From the weight of $BaSO_4$ obtained, find out the amount of Ba and $BaCl_2.2H_2O$ in the given solution.

Reactions:

$FeCI_3$ + $3NH_4OH$	\longrightarrow	Fe(OH) ₃ ↓ + 3NH ₄ Cl
BaCl ₂ + H ₂ SO ₄	\longrightarrow	BaSO₄↓ + 2HCI
BaSO₄	Ignition	BaSO₄

Observations:

1)	Weight of empty Crucible		W ₁ =g.
2)	Wight of Crucible + Residue		
	On first heating (45 Min)	a =g.	
	On second heating (10 Min)	b =g.	
	On third heating (10 Min)	c =g.	
.:. C	Constant weight of crucible + Re	sidue	W ₂ =g.
3)	Weight of Residue	W2-W1	W =g.

Calculation :

BaSO ₄	≡	Ba	≡	BaCl ₂ . 2H ₂ O
233.39	≡	137.34	≡	244.28
1.	≡	0.5884	≡	1.0467

Now

a) Quantity of BaSO₄ in the given solution

50ml diluted sol ⁿ BaCl ₂ 2H ₂ O = Wg. of BaSO ₄	50ml diluted sol ⁿ BaCl ₂ $2H_2O \equiv Wg.$ of BaSO ₄
100 x W	250 x W
\therefore Quantity of BaSO ₄ in 100 ml sol ⁿ =	∴ Quantity of BaSO₄ in 250 ml sol ⁿ =
50	50
= $2 \times W g \text{ of } BaSO_4$	= 5x W g of BaSO ₄
i.e. A =g of BaSO ₄	i.e. A =g of BaSO ₄

b) Quantity of Ba in the given solution

:. <i>`</i>	1 g of BaSO ₄	≡ 0.5887g of Ba
∴ A	g of BaSO ₄	= A x 0.5887 g of Ba.
i.e	. В	=g. of Ba.
c)	Quantity of	$BaCl_2 \cdot 2 H_2O$ in the given solution.
<i>:</i> .	1 g of BaSO ₄	\equiv 1.0467 g of BaCl ₂ . 2H ₂ O.
:. A	A g of BaSO₄	= A x 1.0467 g of BaCl ₂ . 2H ₂ O.
i.e.	С	= g of BaCl ₂ . 2H ₂ O

Results :

1.	50 ml diluted solution contains amount of BaSO ₄	W = g
2.	Quantity of Ba in the given solution	B =g
3.	Quantity of BaCl ₂ .2H ₂ O in the given solution	C =g

3. Gravimetric Estimation of Manganese

Aim: Gravimetric estimation of Manganese as Manganese ammonium phosphate from the given solution containing manganese sulphate, copper sulphate and free sulphuric acid

Theory : The MnNH₄PO₄ is a complex salt formed due to reaction between Mn &

(NH₄)₂HPO₄. This salt is formed at a controlled pH 6.7 to 6.9 and is very unstable. On over heating, it gets converted into Mn₂P₂O₇. So temperature is to be controlled to retain it as desired complex. The direct heating of the precipitate is avoided by drying it in a sintered glass (Gooch) crucible at 383 to 388 K (110 to 115° C) in an electrical oven.

Chemicals : 1) Conc. HCl 2) H ₂ S gas 3) Methyl red indicator	Chemicals	:	1)	Conc. HCl	2)) H₂S gas	3)	Methyl red indicator
---	-----------	---	----	-----------	----	-----------	----	----------------------

5) 2 N CH₃ COONH₄ 6) 10% (NH₄)₂ HPO₄ Apparatus: 1-3 as gravimetric estimation of Iron,

4) 1:1 NH₃

4. Sintered glass crucible (Gooch crucible)

Procedure :

Weighing of sintered Glass crucible: You are supplied with clean sintered Glass Crucible.Wash it with Distilled water and dry it in electric oven for about 20 min at 110° C and weigh after cooling

A) Removal of copper as Cus :

1-5: As gravimetric estimation of Iron.

B) Estimation of Manganese -

- 6. **Precipitation:** To the filtrate free from iron add 2 drops of 1% methyl red indicator solution, which turns pink. Add one test tube (20 ml.) each of 2N CH₃COONH₄ and 10% (NH₄)₂ HPO₄ reagent with constant stirring. If any precipitate forms, then add a few drops of cons. HCl to dissolve it. Heat the solution to boiling. Add 1:1, NH₃ to the hot solution drop wise with constant stirring till precipitate of MnNH₄PO₄ begins to form and, solution turns yellow.
- 7. **Digestion**: Stop addition of ammonia and keep the beaker in boiling water bath. Stir the solution vigorously for 15 minutes to obtain the crystalline MnNH₄PO₄.

Precipitate becomes silky in appearance, solution remains yellow. Allow the precipitate to cool, keep at room temperature for about 30 minutes.

- 8. **Filtration:** Filter the precipitate through a weighed sintered glass crucible.
- 9. Washing: Wash the precipitate with 1% NH₄NO₃ solution till the filtrate is free from Cl⁻and SO₄⁻⁻ and PO₄³⁻ ions.
- 10. Drying and Weighing: Dry the precipitate in an electric oven at 110°C for about 45 minutes and weigh as MnNH₄PO₄ after cooling. Repeat the procedure of heating, cooling and weighing till constant weight is obtained.

Observations:

1) Weight of empty Gooch Crucible	W ₁ =g.
2) Wight of Gooch Crucible + Residue	
On first heating (45 Min) a =g.	
On second heating (15 Min) b =g.	
On third heating (15 Min) c =g.	
∴ Constant weight of Gooch crucible + Residue	W ₂ =g.
3) Weight of Residue W_2 - W_1	W = g.

CuS↓ + H₂SO₄ **Reactions :** 1) $CuSO_4 + H_2S$

2) 2 MnSO₄ + 2(NH₄)₂ HPO₄ \longrightarrow 2MnNH₄PO₄ + (NH₄)₂ SO₄ + H₂SO₄

Calculations:

We know from reaction

185.74

MnNH₄ PO₄. H₂O = Mn \equiv MnSO₄. 4H₂O

= 54.93 = 223.061 = 0.2958 = 1.2009i.e.

1)

Quantity of MnNH₄ PO₄. H₂O in the given solution

 \therefore 50ml diluted solⁿ = Wg. of MnNH₄ PO₄.H₂O \therefore 50ml diluted solⁿ = Wg. of MnNH₄ PO₄.H₂O \therefore 100 ml of Solⁿ = <u>100 x W g</u> of MnNH₄ PO₄.H₂O \therefore 250 ml of Solⁿ = <u>250 x W</u> g of MnNH₄ PO₄.H₂O 50 50 $= 2 \times W g MnNH_4 PO_4.H_2O$ i.e. $= 5 \times W g MnNH_4 PO_4.H_2O$ i.e. А А

2. Quantity of Mn in the given solution

If 1 g of MnNH₄ PO₄.H₂O \equiv 0.2958 g of Mn

'A'g of Complex *.*.. = A x 0.2958 g of Mn.

i.e. В =g Mn

3. Quantity of Mn SO₄. 4H₂O in the given solution

```
\therefore 1 g MnNH<sub>4</sub> PO<sub>4</sub>.H<sub>2</sub>O
                                                   \equiv 1.2009 g of MnSO<sub>4</sub>.4H<sub>2</sub>O
```

```
\therefore A g MnNH_4 PO_4 H_2O \equiv A x 1.2009 g MnSO_4 4H_2O
```

С

Results:

i.e.

1.	50ml diluted solution contains	W = g MnNH ₄ PO ₄
2.	Quantity of Mn in the given solution	B =g
3.	Quantity of MnNH ₄ PO ₄ in the given solution	C =g

		4. Gravimetric Estimation of Nickel					
Aim	:	Grav	Gravimetric estimation of Nickel as bis (dimethlylglyoximato)				
		nicke sulpl	nickel (II) i.e. [Ni(dmg) ₂] from the given solution containing nickel sulphate, ferrous ammonium sulphate and free sulphuric acid.				
Chemicals	:	1)	Given sol ⁿ of Nickel sulphate	2) Cone	e. HNO₃		
		3)	1% Alcoholic Dimethylglyoxime sol ⁿ	4) Solid	NH ₄ CI		
		5)	1:1 NH ₃ sol ⁿ 6) 2 N Acetic acid sol ⁿ	7) Disti	lled water.		
Apparatus Procedure :	:	As p	previous Experiment				

Weighing of sintered Glass crucible: You are supplied with clean sintered Glass Crucible Wash it with Distilled water and dry it in electric oven for about 20 min at 110° C and weigh after cooling

A) Removal of IRON:

- 1. Dilute the given solution up to mark [100ml or 250ml] with distilled water and shake well.
- Pipette out 50ml (Two 25ml pipette) diluted solution in 250 ml Beaker & add to it about 100 ml distilled water. Add about 5ml dilute sulphuric acid 5 ml of conc. HNO₃ Solⁿ. Boil the Solⁿ.+ 1g solid NH₄Cl observe colour (Intense yellow)
- 3. Now precipitate Fe as $Fe(OH)_3$ by adding 1:1 Ammonia solution. Add ammonia till a distinct smell of it to the solution.
- 4. Filter the ppt. of Fe (OH)₃ through ordinary filter paper in hot condition.Wash the ppt. and beaker with hot distilled water and then with hot 1% NH₄NO₃solⁿ. Collect filtrate and washing in 500ml beaker without wasting.Reject the ppt of Fe (OH)₃.
- 5. Boil of excess ammonia [Reduce the volume to half] test vapors with turmeric paper. Use this filtrate for estimation of nickel.

B) Estimation of Nickel:

- 6. **Precipitation:** To the filtrate free from ammonia add about 30 ml alcoholic solution of dimathylglyoxime. Immediately add 1:1 ammonia solution with constant stirring till there is distinct smell of ammonia to the solution.
- 7. **Digestion :** Digest the scarlet red ppt of Ni-DMG complex on boiling water bath for about 50 min. Now test the supernatant liquid with reagent D.M.G. and ammonia to ensure the completion of precipitation of Nickel.
- 8. **Filtration:** Cool the solution and filter the ppt.through previously weighed sintered glass crucible .
- Washing: Wash the ppt. and beaker with hot distilled water. Continue the washing of ppt until fresh filtrate is free from Cl⁻ and SO₄²⁻ ions. Finally wash ppt. with 5-10 ml of ethanol.
- 10. **Drying and Weighing:** Dry the ppt. at about 120° C in an elective oven for about 45 min. Cool the crucible on asbestos sheet and transfer it to desiccators and weigh the residue. Repeat the procedure of heating and cooling and weighing till constant weight is obtained. From the weight of Ni-DMG obtained, find out the amount of NiSO₄. 7H₂O in the given solution using following equations.

Observation:

1)	Weight of empty Gooch Crucible	W ₁ =g.
2)	Wight of Gooch Crucible + Residue	

Calculations :

We know from reaction,

Ni(C	$_{2}H_{7}O_{2}N_{2})_{2}$	≡	Ni	≡	$NiSO_4$. $7H_2O$
i.e	288.92	≡	58.70	=	280.87
i.e.	1	≡	0.2032	≡	0.9721

1) Quantity of Ni(dmg)₂ in the given solution

2) Quantity of Nickel in the given solution: -

 \therefore 1 g of [Ni (C₄H₇O₂N₂)₂] = 0.2032 g of Ni.

$$\therefore$$
 A g of complex = A x 0.2032 g of Ni

3) Quantity of NiSO₄. 7H₂O in the given solution: -

1 g of
$$[Ni(C_4H_7O_2N_2)_2] = 0.9721$$
 g of NiSO₄. 7H₂O

:. A g of
$$[Ni(C_4H_7O_2N_2)_2] = \frac{A \times 0.9721}{1}$$
 g of NiSO₄. 7H₂O

Results :

1. 50 ml diluted solution contains amount of [Ni(dmg)2]	W =g
---	------

- 2. Quantity of Ni in the given solution
 - 3. Quantity of NiSO₄. 7H₂O in the given Solution

C =g

II. INORGANIC PREPARATIONS

5. Preparation of Potassium trioxalatoaluminate (III)

Aim : To prepare potassium trioxalatoaluminate(III) $K_3[AI(C_2O_4)_3]$ · $3H_2O$

Chemicals :

- 1) Aluminum shavings or wire or foil 3) Oxalic acid
- 2) Potassium hydroxide (20%) 4) Ethanol.
- 5) 1:1 NH₃

Procedure :

i) Weigh 1 g 'Al' metal (foil / Shaving) on **Digital balance** ii) Take 30 ml 20% KOH solution in conical flask. Keep the flask on asbestos sheet & add to it 10ml boiled water. iii) Divide 'Al' foil / shavings in four small portions & add one portion to flask and shake. Aluminum gets dissolved with the vigorous effervescence of H₂. After complete dissolution add remaining portions one by one & dissolve Aluminum carefully. iv) Then filter in hot condition through glass wool / cotton plug & heat the solution to boiling v) Weigh 14 g of oxalic acid and add it in small portions to hot solution until the precipitate of hydrated alumina Al_2O_3 · $3H_2O$ formed first, is just redissolved on continued boiling vi) Cool to room temperature vii) Add small piece of litmus in solution. Neutralize the solution by adding 1:1 ammonia solution from **common burette** drop by drop with constant stirring till litmus becomes just blue. Viii) Boil off excess ammonia (Test) & Cool to room temperature. ix) Add 50 ml ethanol with stirring x) Cool beaker in ice-cold water & filter the product through Buchner funnel, dry & weigh.

Observations: i) Aluminum Foil – 1.0 g iii) Ethanol – 50 ml. ii) 20% KOH – 30 ml iv) Oxalic acid -- 14.0 g Reactions :

Calculations :

1) Theoretical yield	2) Percent yield
From the chemical reactions we get AI = $K_3[AI(C_2O_4)_3] 3H_2O$ 26.68 = 462 Now 26.68 g AI metal = 462 g complex \therefore 1 g AI metal = <u>1 x 462</u> g complex 26.68 i.e. A = 17 g. complex	Weight of Product = (X) =g Now, 17 g of complex = 100% yield \therefore X g of complex = $\frac{X \times 100}{17}$ % i.e. B =%

Result:

i)	Weight of product	=	Х	=	g	=x 10 ⁻³ kg
ii)	Theoretical yield	=	А	=	g	=x 10 ⁻³ kg
iii)	Practical % yield	=		В	%	=%

6. Preparation of Tris (ethylenediamine) nickel (II) thiosulphate

Aim:To prepare Tris (ethylenediamine) nickel (II) thiosulphate.[Ni (en)3] S2O3Chemicals:i) Nickel nitrateii) Sodium thiosulphate

iii) Ethylenediamine (Hydrated) iv) Ethanol

Procedure :

i) Weigh out 5 g Nickel nitrate and dissolve in about 25 ml distilled water & add 6 ml ethylenediamine in a beaker with vigorous stirring and then boil. ii) Weigh 5 g sodium thiosulphate and dissolve it in 50 ml distilled water and boil it. iii) Add hot solution of sodium thiosulphate to boiled nickel nitrate solution with constant stirring. Boil resulting solution for a minute & stir well. iv) Cool and filter the faint violet product on Buchner funnel. Wash the product with cold water 2-3 times and finally with little alcohol. v) Dry the product at about 100°C and weigh.

Observation: i) Nickel nitrate -5.0 g ii) Sodium thiosulphate -5.0 g

iii) Ethylene diamine – 6 ml iv)

iv) Alcohol – 10 ml

Reactions :

i) $Ni(NO_3)_2 + 3C_2H_4 (NH_2)_2$ Dissolution [Ni(en)₃] (NO₃)₂

Calculations:

1) Theoretical yield	2) Percent yield				
From the chemical reactions we get	Weight of the product (X) = g				
$Ni(NO_3)_{2.} 6H_2O = [Ni(en)_3] S_2O_3$	Now, 6 g of complex = 100% yield				
291 = 351 i.e. 291 g Ni(NO ₃) ₂ . 6H ₂ O = 351 g complex ∴ 5 g Ni(NO ₃) ₂ .6H ₂ O = 5×351 g complex 291 i.e. A = 6.0 g complex	$\therefore X \text{ g of complex } = \frac{X \times 100}{6} \%$ i.e. B =%				
Result :	H_2				

1)	Weight of product	= X = g =x10 ⁻³ Kg	
ii)	Theoretical yield	= A = g =x10 ⁻³ Kg	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
iii)	Practical % yield	= B % = %	
			Tris (Ethylenediamine) Nickel (II) thiosulphate

7. Preparation of Reinecke's Salt

Aim : To Prepare ammonium diamminetetrathiocyanatochromate (III), (Reineck's Salt) NH₄[Cr(CNS)₄.(NH₃)₂]. H₂O.

Chemicals :i) Ammonium thiocyanate, ii) Ammonium dichromate, 3) Ice etc.Procedure :

i) Weigh 10 g. Ammonium thiocyanate in evaporating dish. ii) Fuse 10 g of ammonium thiocyanate at 150° in an evaporating dish. Stir the fused mass iii) To this melt add 2 g of crushed powder of ammonium dichromate, in small lots (200 mg) with constant stirring. Violent reaction occurs with evolution of NH₃.iv) Heat the dish carefully until brisk effervescence stop. Cool the purple colored melt and allow it to solidify. v) Powder the solid mass with metal spatula & transfer it to a beaker vi) Dissolve out unreacted NH₄CNS and (NH₄)₂Cr₂O₇ by shaking the impure product with 20 ml of ice cold water. vii) Filter the solution by suction. Wash solid with alcohol followed by cold distilled water.

Recrystallization: Dissolve the crude product in about 25 ml of hot distilled water at about 70^oC. Filter the solution while hot. Cool the filtrate in ice-bath and allow the Reineck's salt to recrystallize as glistering red solid. Filter the solution by suction, dry the product in sunlight and record its yield. Calculate theoretical and practical percentage yield of the complex.

Observation	: i)	Ammonium Thicyanate	:	10.0 g
	ii)	Ammonium Dichromate	:	2.0 g
Reactions :				

$$(NH_4)_2Cr_2O_7 + 8NH_4CNS \rightarrow 2NH_4^+$$

 $+ NH_3 + 4 H_2O + 3/2 O_2$

Calculations :

1) Theoretical yield	2) Practical yield				
From the chemical reaction we get,	Weight of the product = $X = \dots$ g				
$(NH_4)_2Cr_2O_7 = 2NH_4[Cr(CNS)_4.(NH_3)_2]. H_2O.$	Now $5.62 \text{ g complex} = 100 \%$ yield				
$252.063 = 2 \times 354$	\therefore X g complex = X x 100 %				
Now, 252.063 g $(NH_4)_2Cr_2O_7 = 2 \times 354$ g complex	5.62				
$\therefore 2 g (NH_4)_2 Cr_2 O_7 = \frac{2 \times 354 \times 2}{252.063} g \text{ complex}$	i.e. B =%				
i.e. A = 5.62 g complex					

Result :

i)	Weight of product	=	Х	=	g	=x 10 ⁻³ kg
ii)	Theoretical yield	=	А	=	g	=x 10 ⁻³ kg
iii)	Practical % yield	=		В	%	=%

8. Preparation of Chloropentaamminecobalt (III) Chloride

Aim : To Prepare Chloropentaamminecobalt (III) chloride. [Co (NH₃)₅Cl] Cl₂

Chemicals :1)Cobaltous chloride, 2) Ammonium chloride , 3) Ammonia.4)Hydrogen peroxide (20 Volume) 5) Hydrochloric acid.

Procedure :

i) Take 5 g cobaltous chloride in a 250 ml beaker and dissolve it in minimum distilled water. ii) Weigh 10 g ammonium chloride and dissolve in 40 ml liquor ammonia. iii) Add this ammonical ammonium chloride solution to the cobaltous chloride solution with constant stirring. Cool the solution in a water bath. iv) Add by a burette 2 ml H_2O_2 at a time with constant stirring until the addition of 25 ml H_2O_2 is complete v) Continue the stirring of solution with Conc. HCl. (Test it by litmus paper, both blue and red litmus should remain unaffected.) vii) Then add 10 ml conc. HCl in excess (Blue litmus paper should turn red). viii) Heat the solution gently to boiling. ix) Allow it to cool to room temperature when purple coloured crystals separate out. x) Filter the product and wash with alcohol. Dry and record the yield.

Observation:

i)	Cobalto	ous c	hloride	=		5.0) g		
ii)	Ammor	nium	chloride	= =		10.0) g		
iii)	Ammor	nia		=		40	ml		
iv)	H_2O_2			=		25	ml		
v)	Con. H	CI		=			ml.		
React	ions: i	i)	H_2O_2					\rightarrow	$H_2O + (O)$
	i	i) 20	CoCl ₂ +	2NH ₄ Cl	+	[O]		\rightarrow	2CoCl ₃ + 2 NH ₃ + H ₂ O

Calculations :

1) Theoretical yield

From	the	chemical	reaction	we	aet.
1 10111	uic	onennear	reaction	WVC	gui,

CoCl₂. $6H_2O$ = [Co(NH₃)₅ Cl] Cl₂. 237. 93 = 250. 43 Now, 237.93 g CoCl₂. $6H_2O$ = 250.43 g of complex ∴ 5.g CoCl₂. $6H_2O$ = 5 x 250.43 g of complex

i.e. A = 5.269 g of the complex

2) Practical percentage yield

Wight of Product = X =g

Now, 5.26 g of complex = 100% \therefore 'X' g of complex = $'X' \times 100\%$ 6%i.e. B = $\dots \%$

Result :

i)	Weight of product	=	Х	=	g	=x 10 ⁻³ kg
ii)	Theoretical yield	=	А	=	g	=10 ⁻³ kg
iii)	Practical % yield	=		В	%	=%

9. Preparation of Tris(thiourea)cuprous sulphate

Aim : To Prepare of tris (thiourea) cuprous sulphate. [Cu.3tu] ₂ SO₄. 2H₂O

Chemicals : 1) Copper sulphate , 2) Thiourea, 3) 1 N H_2SO_4 4) 5 % Thiourea

Procedure

i) Weight 5 g thiourea and dissolve it in 30 ml hot distilled water by constant stirring ii) Weight 5 g of copper sulphate and dissolve in 30 ml. water. iii) Cool both the solution to room temperature. Add slowely the solution of copper sulphate to the thiourea solution with constant stirring. iv) Cool the mixture under a running tap water until the separated oil adheres to the wall of the beaker. Decant the mother liquour. v) Dissolve 4 g thiourea in 40 ml water, add it to oily layer with constant stirring. Keep the beaker in ice-cold water till the crystallization is complete. vi) Filter the solution and wash the crystals with distilled water.

vii) **Recrystallition**: Dissolve the product in 50 ml solution of 5 % thiourea in a flat bottom flask add 1 ml of 1 N H_2SO_4 . Heat the solution in water bath for 30 minutes (The solution may be heated to maximum of 75° C to dissolve the product) Cool the solution in ice bath. Filter & dry the product and record the weigh.

Observations:	i)	Copper Sulphate	= 5.0 g
	ii)	Thiourea	= 5.0g
	iii)	H ₂ SO ₄ , 1 N	= 1.0 ml

Calculations :

1) Theoretical yield	2) Practical percentage yield				
From the chemical reaction we get,	Weight of the product = x =g				
$2CuSO_{4.}5H_{2}O = [Cu. 3tu]_{2} SO_{4.} 2H_{2}O$ 499.366 = 715.867	Now, 7.167 g of complex = 100% yield				
Now, $499.366 \text{ g} = 715.867 \text{ g} \text{ complex}$	$\therefore \text{'X' g of complex} = \frac{\text{'X' x 100 \%}}{7 167}$				
\therefore 5 g CuSo ₄ = $\frac{5 \times 715.86}{499.366}$ 7 g complex	i.e B =%				
= 7.167 g of the complex					
i.e $A = 7.167 \text{ g complex}$					

Result :

i)	Weight of product	=	Х	=	 g	=x 10 ⁻³ kg
ii)	Theoretical yield	=	A	=	 g	=10 ⁻³ kg
iii)	Practical % yield	=		В	%	=%

10. Preparation of Hexaamminenickel(II) chloride

Aim : To Prepare of Hexaamminenickel(II) chloride. [Ni(NH₃)₆] Cl₂

Chemicals : 1) Nickel Chloride 2) Ammonia Buffer (pH 10) 3) Ethyl alcohol Procedure :

i) Weigh 5 g Nickel Chloride and dissolve it in 20 ml warm distilled water by constant stirring ii) keep it in a ice bath for about 30 min. iii) Add 30 ml ammonia buffer with constant stirring until the blue ppt of Nickel hydroxide first formed is dissolves iv) Cool the solution in ice bath.The crystals of Hexaamminenickel(II) chloride separates out v) Add 50 ml ethyl alcohol. Filter the product on Buckner funneland wash with little alcohol. v) Dry the product and weigh it on rough balance

Reactions:

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart **Observations:**

Coloulations							
iii)	Ethyl alcohol	=	50 ml				
ii)	Ammonia Buffer (pH 10)	=	30 ml				
i)	Nickel Chloride	=	5.0 g				

Calculations :

1) Theoretical yield	2) Practical percentage yield
From the chemical reaction we get,	Weight of the product = X =g
$NiCl_{2.6}H_{2}O \equiv [Ni(NH_{3})_{6}] Cl_{2}$	Now, 4.87 g of complex = 100% yield
337.7 ≡ 231.71 Now,	$\therefore \text{'X' g of complex} = \frac{\text{'X' x 100 \%}}{4.87}$
$337.7 \text{ g NiCl}_{2.6H_2O} \equiv 231.71 \text{ g complex}$	ie B = %
$\therefore 5 \text{ g NiCl}_{2.6H_2O} = 5 \times 231.71 \text{ g complex}$	
337.7	
= 4.87 g of the complex	
i.e. $A = 4.87$ g complex	

Result :

i)	Weight of product	=	Х	=	g	=x 10 ⁻³ kg
ii)	Theoretical yield	=	A	=	g	=10 ⁻³ kg
iii)	Practical % yield	=		В	%	=%

CHARACTERISTICS OF INORGANIC PREPARATIONS

Sr. No.	Characteristics	5.Potassiumtrioxalato aluminate(III)	6.Tris(en)nickel(II) thiosulphate	8.Chlopentaminecobalt(III) chloride	9.Tristhioureacuprous sulphate	10.Hexaminenickel(II) chloride	
1.	Nature	Crystalline	Crystalline	Crystalline	Crystalline	Crystalline	
2.	Color of the compound	White	Faint violet	Purple	White	Blue / Violet	
3.	Central metal	Al	Ni	Со	Cu	Ni	
4.	Oxidation state of metal ion	+3	+2	+3	+1	+2	
5.	Nature of ligand	Bidentate Oxalato chelating	Bidentate Ethylenediammine Chelating	Monodentate Strong field=5, Weak field=1	Monodentate	Monodentate	
6.	Nature of bonding	Covalent	Coordinate	Coordinate, Covalent	Coordinate	Coordinate	
7.	Type of hybridization	sp ³ d ²	sp ³ d ²	d ² sp ³	sp ³	sp ³ d ²	
8.	Inner/ Outer orbital complex	Outer	Outer	Inner	-	Outer	
9.	Geometry	Octahedral (See Page No.11)	Octahedral (See Page No.12)	Octahedral (See Page No.14)	Tetrahedral (See Page No.15)	Octahedral (See Page No.16)	
10.	Magnetic property	Dimagnetic	Paramagnetic	Dimagnetic	Dimagnetic	Paramagnetic	

III. TITRIMETRIC ESTIMATIONS

A) PERCENTAGE PURITY

11. Percentage Purity of Ferrous ammonium sulfate (Mohr's Salt)

Aim

To determine the percentage purity of the given sample containing crystalline Ferrous ammonium sulfate by using standard solution of Potassium dichromate.

Chemicals

:

- 1) Given crystalline sample of Mohr's salt (FAS). 2) $0.1N K_2Cr_2O_7$ solution.
- 3) Masking reagent $(H_2SO_4 + H_3PO_4 \text{ mixture})$ 4) Diphenylamine indicator
- 5) Distilled water.

PROCEDURE : Part –I : Preparation of Sample solution : -

i) Weigh accurately **about but not exactly 5.000 g** (4.800 g to 5.200 g) of the given sample of F.A.S., on a watch glass. ii) Transfer the sample to 250 ml beaker & wash the watch glass with distilled water in same beaker. Add about $\frac{1}{2}$ T.T. dil. H₂SO₄ and dissolve. iii) Transfer the content of beaker to 250 ml measuring flask without wasting single drop of solution. Wash the beaker 2-3 times with distilled water. iv) Dilute the solution up to mark & shake well.

Part -II: Determination of % Purity :-

i) Pipette out 25 ml of diluted solution in a conical flask. ii) Add to it one test tube masking reagent carefully. iii) Then add to it 2-3 drops of Diphenylamine indicator and titrate against 0.1 N $K_2Cr_2O_7$ solution. End point is pale green to violet blue. iv) Repeat the procedure and find out CBR. Say X ml.

Part –I : Preparation of Sample solution

Observations :-

1)	Weight of empty watch glass	W ₁ =g.	
2)	Weight of sample		W =g.
3)	Weight of watch glass + sample	(W ₁ +W)	W ₂ =g.

Part -II: Determination of % Purity

Observations:-

1) In burette : 0.1 N K₂Cr₂O₇ solution

```
2) In conical flask : 25 ml dil. sample sol<sup>n</sup> by pipette + (1 T.T. masking reagent.)
```

- 3) Indicator
- Diphenylamine (2-3 drops)Pale green to violet blue.
- 4) End point : Observation Table:-

Burette level	Bure	CBP		
	Ι	II	III	0.D.N.
Final level				
Initial level				X =ml

1	9
	<u> </u>

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart					
	Difference				

Reactions :-

 $K_2Cr_2O_7 + 6FeSO_4.(NH_4)_2SO_4 + 7H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + 6(NH_4)_2SO_4 + 7H_2O.$

Calculations:

We ha	ave						
	I)	Weight of sam	Weight of sample taken = W =g				
	II)	C.B.R.		X =	r	ml.	
1.	Calcu	ulation of % pu	rity –				
	1 r	ml of 0.1 N K ₂ C	$r_2O_7 \equiv$	0.0392	g	FAS	
	∴ X r i.e.	nl of 0.1 N K₂Cr A	² 2O ₇ ≡ =	0.0392 x X	g g	FAS. FAS.	
	Am	nount of FAS pro	esent in	the 25 ml dil.	sol) = A	g.
	∴ Am	nount of FAS pr	esent in	250ml sol ⁿ		= A x	10 g
		i.e.	В			=	g FAS.

Now B g of F.A.S. present in 250 ml diluted sample solⁿ i.e. in the 'W'g of sample. Then, we write

∴ W g of sample.	=	В	g of FAS
∴ 100 g of sample	=	<u>B x 100</u> W	%
i.e. Percentage purity of F.A.S.	= P	=	%

2. Calculation of Volume of 0.1 N K₂Cr₂O₇ solⁿ equivalent to 0.500 g of given sample

As	W	g of	sample requires	=	Х	ml o	f 0.1 ł	K₂Cr₂O7 so	ol ⁿ
	10								
<i>.</i>	<u>5.000</u>	OR	0.500 g of sample requires	=	<u>X x 0.5</u>	500 x	<u>(10</u>	ml of 0.1	N K ₂ Cr ₂ O ₇
	10				W				
	i.e.		V	=		ml	of 0.1	$N K_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr_2 Cr$	D ₇

Results:

1	Weight of sample taken	W = g
2	Volume of 0.1 N $K_2Cr_2O_7$ solution required for 25 ml diluted sample solution	X =ml
3	Volume of 0.1 N $K_2Cr_2O_7$ solution equivalent to 0.5 g of the given sample	V =ml
4	Percentage Purity of the given sample	P=%

12. Percentage Purity of Tetraamminecopper (II) sulphate

Aim	:	To determine the percentage purity of	the given sample containing		
		crystalline Tetraaminecopper (II) sulph	ate monohydrate by redox		
		titration using standard Na ₂ S ₂ O ₃ Solution.			
Chemicals	: 1) G	iven sample of [Cu(NH ₃) ₄] SO _{4.} H ₂ O.	2) 1:1 NH ₃		
	3) St	andard 0.05 N Na ₂ S ₂ O ₃ solution	4) 2 N Acetic acid		

5) 10% KI solution

Procedure : Part – I : Preparation of sample Solution

i) Weigh accurately about *but not exactly* **1.500 g** (1.300 g to 1.700 g) of the given solid sample on watch glass. ii) Transfer it completely to 250 ml beaker and wash watch glass with distilled water in same beaker. iii) Add to it ½ T.T. 2N Acetic acid and dissolve the complex. iv) Now transfer the solution from beaker to 250 ml volumetric flask without wasting a single drop of solution. Dilute the solution up to mark carefully with distilled water & Shake well.

Part – II: Determination of % Purity

i) Pipette out 25 ml of diluted solution in conical flask. ii) Add 1:1 ammonia drop by drop till bluish precipitate appears. Now add drop-by-drop 2N Acetic acid till the precipitate formed first is just dissolves. iii) Now add 1 T.T. 10% KI solution and shake well. iv) Titrate liberated iodine against given 0.05 N Na₂S₂O₃ solution by using starch indicator. End point is blue to colorless (White ppt.) v) Repeat the procedure and find out CBR.

Observations – Part – I: Preparation of Sample Solution

1)	Weight of empty watch glass		W ₁ =g.
2)	2) Weight of sample		W =g.
3)	Weight of watch glass + sample	(W ₁ +W)	W ₂ =g.

Part – II : Determination of Percentage purity

1) In burette : $0.05N Na_2S_2O_3$ solution.

2)	In conical flas	k : 25 ml diluted sample solution by pipette +
		[1:1 NH ₃ till bluish ppt + 2 N Acetic acid sol ⁿ till ppt dissolves + 1 T.T. 10% KI Solution]
3)	Indicator	: Starch (1 ml)
4)	End point	: Blue to colorless

Observation Table :

6) Starch Indicator

S.S.M.Barshi. B.Sc. III - Inorganic Chemistry Practical Chart As previous experiment C.B.R. = X ml. Reactions 1. [Cu (NH₃)₄] SO₄ + 4CH₃ COOH \rightarrow CuSO₄ + 4 CH₃COONH₄ 2. $2CuSO_4$ + 4KI \rightarrow 2Cul + $2K_2SO_4$ + I_2 3. $2 \text{Na}_2\text{S}_2\text{O}_3 +$ **|** 2 \rightarrow 2Nal $Na_2S_4O_6$ Sodium tetra thionate Calculations: We have Weight of sample taken (W) =g. 1) 2) CBR (X) =ml. % Purity 1) As 1 ml of 0.05 $Na_2S_2O_3$ solⁿ = 0.01229 g Complex \therefore X ml of 0.05N Na₂S₂O₃ solⁿ = X x 0.01229 g complex i. e. А = g of complex Now, 25 ml of diluted solⁿ = A g complex ∴250 ml of diluted solⁿ = Ax10 g of complex i.e В =..... g of complex The 250 ml diluted solⁿ means W g of sample solⁿ contains B g of complex . We write \therefore W g of sample of [Cu (NH₃)₄] SO₄H₂O = B g of complex \therefore 100 g of sample of complex <u>B x 100</u> g of complex = i.e. Percentage purity of complex of $[Cu(NH_3)_4]$ SO_{4.}H₂O = P =....%. Volume of 0. 05N $Na_2S_2O_3$ solⁿ equivalent to 0.150 g of sample. 2) = X ml of 0.05N Na₂S₂O₃ solⁿ As <u>W</u> g of sample 10 $\therefore 1.500$ or **0.150** g of sample = $0.150 \times X \times 10$ ml of $0.05N \text{ Na}_2\text{S}_2\text{O}_3 \text{ sol}^n$ W 10 i.e V = ml of 0.05N Na₂S₂O₃ solⁿ

Results:

1	Weight of sample taken	W = g
2	Volume of 0.05 N Na ₂ S ₂ O _{3.} 5H ₂ O sol ⁿ required for 25 ml diluted sample solution	X =ml
3	Volume of $0.1 \text{ N} \text{ Na}_2\text{S}_2\text{O}_{3.5}\text{H}_20$ Solution equivalent to 0.150 g of the given sample	V =ml
4	Percentage Purity of the given sample	P=%

crystalline $K_3[AI(C_2O_4)_3. 3H_2O$.

Chemicals : 1) Given sample of $K_3[AI(C_2O_4)_3.3H_2O$

2) Standard solⁿ of 0.1 N KMnO₄

PROCEDURE Part –I:Preparation of Sample solution: -

i) Weigh accurately about **but not exactly 1.450 g** (1.250 g to 1.650 g) of the given sample of crystalline Potassium trioxalatoaluminate (III) on a watch glass. ii) Transfer the sample to 250ml beaker and wash the watch glass with distilled water in same beaker. iii) Dissolve the solid and add $\frac{1}{2}$ T.T. 2N H₂SO₄. iv) Now transfer the contents to 250ml volumetric flask without wasting a single drop of solution. v) Wash the beaker 2-3 times with distilled water and transfer to flask & dilute the solution up to mark with distilled water. Shake well the solution.

Part - II: Determination of % Purity

i) Pipette out 25 ml of diluted solution in a conical flask. ii) Add to it about one T.T. 2 N sulphuric acid. iii) Heat the content of the flask to about 80° C **on boiling water bath** & titrate this solution against 0.1 N KMnO₄ solⁿ. End point is colorless to permanent faint pink. iv) Repeat the procedure and find out C.B.R. say 'X'ml.

Observations – Part – I: Preparation of sample solution

1)	Weight of empty watch glass	W ₁ =g.	
2)	Weight of sample		W =g.
3)	Weight of watch glass + sample	(W ₁ +W)	W ₂ =g.

Part - II: Determination of % Purity

1)	In burette	:	0.1 N KMnO ₄ solution
2)	In conical flask	: :	25 ml diluted sample solution by pipette +
			[1 T.T 2N H ₂ SO ₄ + Heat to 80°C on boiling water bath]
3)	Indicator	:	KMnO ₄ itself
4)	End point	:	Colorless to permanent faint pink

Observation Table:

As previous experiment CBR = X ml

Reactions : i) $2K_3[AI(C_2O_4)_3] + 6H_2SO_4 \rightarrow 3K_2SO_4 + AI_2(SO_4)_3 + 6H_2C_2O_4$

ii)
$$2KMnO_4+3H_2SO_4+5H_2C_2O_4 \rightarrow K_2SO_4+2MnSO_4+8H_2O+10CO_2$$

Calculations: 1) Weight of sample taken (W) =g. 2) CBR = X =g.

1) % Oxalate group :

\therefore 1ml of 0.1 N	KMnO₄ sol ⁿ	= 0.0044 g	of oxalato group	
∴ X ml of 0.1	N KMnO4 sol ⁿ	= X x 0.004	4 g of oxalato group	
i.e. A		= g of oxalato group		
Now, 25 ml of	diluted sample sol ⁿ	= A g of oxalato group		
∴ 250ml of dilu	uted sample sol ⁿ	= A x 10 g	of oxalato group	
i.e.	В	=	g of oxalato group	
Hence,				
	W g of sample	= B	g of oxalato group	

23

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart $\therefore 100 \text{ g of sample} = \frac{100 \text{ x B}}{\text{W}} \%$ i.e. P =%

2) Calculation of Purity of K₃[Al(C₂O₄)₃] . 3H₂O Complex

a) % Oxalato group (Theoretically).

 $K_3[AI(C_2O_4)_3] \cdot 3H_2O = 3(C_2O_4)$ 462 = 264

i. e. 462 g of complex = 264 g of oxalato group.

 $\therefore 100 \text{ g of complex} = \frac{264 \times 100}{462} \text{ g of oxalato group}$

Thus theoretical % of oxalato group in complex = 57.15%

b) Percentage purity of complex K₃[Al(C₂O₄)₃] . 3H₂O

:.57.15 % oxalato group in complex = 100% Purity of complex

 $\therefore P \% \text{ oxalato group in given complex} = \frac{P \times 100}{57.15} \%$ i.e. C =.....%

- 3) Calculation of Volume of 0.1 N KMnO₄ Equivalent to 0.145 g of the given sample of $K_3[Al(C_2O_4)_3]$. $3H_2O$
 - $\therefore \quad \underline{W} \quad g \text{ sample} \quad = X \quad ml \text{ of } 0.1 \text{ N KMnO}_4$
 - ... $\frac{1.450}{10}$ or 0.145 g of sample = $\frac{0.145 \times X \times 10}{W}$ ml i.e. V =......ml

Results :

1	Weight of sample taken	W= g
2	Volume of 0.1 N KMnO ₄ sol ⁿ required for 25 ml diluted sample solution	X =ml
3	Volume of 0.1N KMnO ₄ sol ⁿ equivalent to 0.145 g of the sample	V =ml
4	Percentage of the oxalato group in the given sample	P=%
5	Percentage purity of the given complex	C=%

B) ANALYSIS OF COMMERCIAL SAMPLE

14. Percentage of Magnesium in Talcum Powder

Aim :To determine the percentage of magnesium in the given sample of talcum powder by complexometric titration, using standard 0.01M EDTA solution.

Chemicals : 1) Given sample of talcum powder 2) 0.01M EDTA solution

3) Buffer Solution of pH-10

5) Distilled water

Composition of Talcum powder : Zinc oxide, Magnesium oxide, Boric Acid, Scent, Sandal / Starch Antifungal & antibacterial agents

Procedure : Part – I : Preparation of Solution

i) Weigh accurately about *but not exactly*, **1.5 g** (1.400 g – 1.800 g) of the given sample of talcum powder on a watch glass. ii) Transfer sample completely to 100 ml (small) beaker. iii) Wash the watch glass with water and add 10 ml conc. HCl in same beaker. iv) Heat the solution till volume reduces to about 2 ml. v) Now cool beaker on asbestos sheet and add again 2 T.T. distilled water and boil again. vi) Cool well, and filter the solution through Whatman paper No.1 or ordinary paper in a 250 ml measuring flask. vii) Wash the beaker as well as filter paper and collect washing in same measuring flask. viii) Finally dilute the solution up to mark with distilled water carefully & shake well the solution.

Part - II : Determination of % Magnesium

i) Pipette out 25ml diluted sample solution is a conical flask. ii) Add about 2 T.T. distilled water and about 1/3 T.T.(5ml) buffer solution of pH 10. iii) Titrate this solution against given standard 0.01 M EDTA solution by using Eriochrome Black –T indicator. End point is wine red to sky blue. iv) Repeat the procedure and find out C.B.R. Say it is 'X' ml.

Observations: Part – I : Preparation of Solution

1)	Weight of empty watch glass	Weight of empty watch glass	
2)	Weight of sample		W =g.
3)	Weight of watch glass + sample	(W ₁ +W)	W ₂ =g.

Part – II: Determination of % Magnesium

- 1) In burette : 0.01M EDTA solution.
- 2) In conical flask: 25 ml diluted sample + [2T.T.Dist.H₂O+1/3 T.T.Buffer Solⁿ of pH 10]
- 3) Indicator : Eriochrome Black-T [3-4 drops or pinch of solid]
- 4) End point : Wine red to sky blue.

Reactions : i] MgO + 2HCl \rightarrow MgCl₂ + H₂O

ii] $MgCl_2 + Na_2H_2 EDTA \rightarrow Na_2 [Mg EDTA] + 2HCl$

Observation Table : Same as in Volumetric Analysis – 1, CBR = Xml.

Calculations : We have

1. Weight of sample taken (W) =g.

2. C.B.R. (X) =ml.

1) % of Magnesium	Thus,
Then,	W g of sample = B g of Mg.
1 ml of 0.01 M EDTA= 0.0002431 g Mg	\therefore 100 g of sample = <u>B x 100 g</u> of Mg.
∴Xml of 0.01N M EDTA=0.0002431xXg Mg.	W
i. e. A =g of Mg.	i.e. P =% of Mg.
Now,	
25 ml of diluted sample $sol^n = A g$ of Mg.	

4) Eriochrome Black – T indicator,

,	S.S.M.Barshi. B.Sc. III – Inorga	nic Chemistry Practical Chart	
	∴ 250 ml of diluted sol	= Ax10 g of Mg.	
	∴ В	= g of Mg.	

3) Volume of 0.01M EDTA equivalent to 0.150 g of talcum powder.

As <u>W</u> g of sample talcum powder = X ml 0.01 M EDTA 10 $\therefore \underline{1.500}_{10}$ or 0.150 g of talcum powder = $\underline{0.150 \times X \times 10}_{W}$ ml 0.01 M EDTA W

Results:

1	Weight of sample taken	W= g
2	Volume of 0.01 M EDTA solution required for 25 ml diluted sample solution	X =ml
3	Volume of 0.01 M EDTA solution equivalent to 0.150 g of the sample	V =ml
4	Percentage of Magnesium in the given talcum powder	P=%

15. Amount of Aluminum in Potash Alum

Aim: To determine the amount of Aluminum in potash alum by complexmetric titration (Indirect method) using standard solution of EDTA and Zinc Sulphate

Chemicals: 1) Given sample solution of potash alum in 250 ml volumetric flask

2) 0.01M EDTA	3) 0.01 M ZnSO4, sol ⁿ	4)	Ammonia (1:1)
---------------	-----------------------------------	----	---------------

5) Eriochrome Black – T

6) Distilled water

Procedure : A) Back Titration:

i) Dilute the given solution of potash alum to 250 ml distilled water and Shake well. I) Pipette out 25ml of this diluted solution in conical flask. iii)Add to it 25 ml 0.01 M EDTA solution by pipette. Maintain pH between 7 - 8 by addition of 1:1 ammonia (5 ml) test with red litmus paper it should turn blue. iv) Boil the solution for few min. v) Cool the solution to room temperature. vi) Add again 5ml 1:1 Ammonia solution and Eriochrome Black –T indicator and shake well vii) Titrate this solution against 0.01 M Zinc sulphate solution. End point is sky blue to wine red. viii) Repeat the procedure and find out CBR say it is 'Y' ml.

B) Blank Titration :

i) Pipette out 25 ml of standard 0.01 M EDTA solⁿ in a conical flask. ii) Add 5 ml of 1:1 Ammonia to adjust pH of solⁿ 7-8. iii) Then add 2-3 drops of Eriochrome Black-T indicator.

iv) Titrate this solⁿ against 0.01 M Zinc Sulphate solution. End point is sky blue to win red. v) Repet the procedure and find CBR say it is 'X' ml.

Observations	5
--------------	---

A) Back Titration:	B) Blank Titration :			
In burette: 0.01M Zinc sulphate sol ⁿ	In burette : 0.01M Zinc sulphate sol ⁿ			
In conical flask : 25ml diluted Potash	In conical flask : 25 ml 0.01M EDTA +			
alum sol ⁿ + 25 ml 0.01MEDTA +	5 ml Ammonia(1:1) sol ⁿ			
+ 5ml 1:1 NH ₃ sol ⁿ	Indicator : Eriochrome Black-T			
Indicator : Eriochrome Black-T	(5-6 drops or Pinch of solid)			
(5-6 drops or Pinch of solid)	End point : Sky blue to Wine red.			
	p			
Observation Table :	V – mel			
A) Back litration : As usual : C.B.R.=	Y =			
B) Blank Litration : As usual : C.B.R.=	: X =ml			
Boactions: $A^{1+3} + N_2 + H_2 \in DTA$				
$\begin{array}{c} \text{iii} \\ iii$	$Na_{1}[Zn EDTA] + 2H^{+}$			
Calculations :				
A] CBR of Back = Y =	ml.			
B] CBR of Blank = X =	ml			
\therefore X-Y = Z ml of 0.01 M ZnSO ₄ i.e. Z ml EE	OTA required for complexation of Al.			
1) Amount of Aluminium:				
As 1ml of 0.01M ZnSO4 (i.e. I	EDTA) = 0.0002698 g Al.			
∴ Z ml of 0.01 M ZnSO₄ sol ⁿ	= 0.0002698 x Z g Al			
i.e. A	= g Al			
Now, 25 ml diluted potash alun	n sol ⁿ = A g Al			
\therefore 250 ml of diluted potash alu	ım sol ⁿ = A x 10 g Al			
i.e. B	=g Al.			
2) Amount of Potash alum:				
As 1ml of 0.01M ZnSO ₄ (i.e.	EDTA) = 0.004744 g of Potash alum.			
∴ Z ml of 0.01 M ZnSO₄ sol ⁿ	= 0.004744 x Z g of Potash alum			
i.e. C	= g of Potash alum.			
Now ,25 ml diluted sol ⁿ	= C g of Potash alum.			
∴ 250 ml of diluted sol ⁿ	= C x10 g of Potash alum			
i.e D	= g of Potash alum			
Results :				
1 Blank titration reading	(X) =ml			

1	Blank titration reading	(X)	=ml	
2	Back titration reading	(Y)	=ml	

S.S.I	M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart			
3	Difference between blank and back titration	(X-Y)=Z	=ml	
	readings			
4	Quantity of Aluminum in the given sample	(B)	=g	=x10 ⁻³ kg
5	Quantity of Potash Alum in the given	(D)	=g	=x10 ⁻³ kg
	sample			

16. Titrable Aciditv of Milk/ Lassi

Aim : Determine titrable acidity of the supplied sample of milk / lassi by acid base titration.

Chemicals	:	1)	$H_2C_2O_4$ crystals	2) 0.1 N NaOH
		3)	Phenolphthalein	4) Sample of milk etc.

Theory

:

Freshly drawn milk is amphoteric i.e. litmus turns blue and vice versa. It shows acidity as determined by titration with an alkali like NaOH using phenolphthalein. This acidity i.e. tritrable acidity (T.A.) as it is determined by titration is known as "natural" (or apparent) acidity and is caused by presence of casein, acid phosphates, citrates in milk. The higher the solids but not fat content in milk, the higher the natural acidity (N.A.) and vice versa. The T.A. of cow milk is **0.13 to 14** % and for buffalo milk is **0.14 to 0.15** %. Developed or real acidity is due to lactic acid formed as a result of bacterial action on lactose in milk. Hence T.A. of stored milk is equal to the sum of natural acidity and developed acidity. It is expressed as a percentage of lactic acid.

Procedure: Part – I: Standardization of NaOH

- 1) Weigh exactly 1.575 g Oxalic acid crystals on a watch glass and transfer them in a beaker. Dissolve it in minimum quantity distilled water and transfer this solution to 250 ml volumetric flask. Rinse the beaker 2-3 times using distilled water and collect the washing in same volumetric flask. Dilute the content up to the mark with distilled water and shake well. It gives standard 0.1N Oxalic acid solution.
- 2) Pipette out 25 ml of 0.1 N H₂C₂O₄ in conical flask add two drops phenolphthalein indicator and titrate this solution against supplied 0.1 N NaOH solution from the burette till colour changes from colourless to faint pink.
- 3) Take three readings and note the C.B.R. as 'X' ml.
- 4) Form this calculate the exact normality of NaOH using $N_1V_1 = N_2V_2$ relation

Part – II: Titrable Acidity of Milk/ Lassi (Industrial Method)

1) Take two different volume, of milk/Lassi by common burette (Wg) :

10	15	20	25	30	35	ml of milk / lassi
Add to it one test tube hot distilled water .						

2) Add phenolphthalein indicator to the milk sample taken in the conical flask.

3) Titrate this solution against standardized NaOH solution from burette till colur change from colorless to faint pink. Take more readings using the same procedure and note down CBR as V₁ ml for Set I

- 4) Repeat the experiment for another volume of milk or lassi by using same procedure and note down CBR as V₂ ml for **Set II**
- **Note:** i] Titration should be completed within 20 sec. with constant stirring.

ii] Assume the density of Milk /Lassi=1.0

Observations and Observation Tables: Part – I: Standardisation of NaOH

Observations [a] :

1)	Weight of empty watch glass	W ₁ =g.	
2)	Weight of sample		W =g.
3)	Weight of watch glass + sample	(W ₁ +W)	W ₂ =g.

Obs	ervations [b]	C	Observa	ation T	able	
In burette	: 0.1N NaOH	Burette Level	Burett	e Readi	ng in ml	CBR
	flack : 25ml 0.1 N		Ι	II	III	
	HASK . ZOTH U.I IN	Final Level				
1120204		Initial Level				X =ml
Indicator	Phenoiphthalein	Difference				
End point	:Colourless to pink					

Reactions: $H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$

Part – II: Titrable Acidity of Milk/ Lassi (Industrial Method) OBSERVATIONS & OBSERVATION TABLE

Set:I

0	bservations		Observ	vation 1	Fable	
In burette	: 0.1N NaOH	Burette Level	Burett	e Read	ling in ml	CBR
In conicol fl			Ι	II	III	
		Final Level				
Indicator	:Phenolphthalein	Initial Level				V ₁ =ml
End point	:Colourless to pink	Difference				
			L	L		

Set:II

	Observ	vation 1	fable	
Burette Level	Burett	e Read	ling in ml	CBR
	Ι	II	III	
Final Level				
Initial Level				V ₂ =ml
Difference				
	Burette LevelFinal LevelInitial LevelDifference	Burette Level Burette I I Final Level I Initial Level I Difference I	Burette LevelBurette ReadIIIFinal LevelIInitial LevelIDifferenceI	Burette LevelBurette Reading in mlIIIFinal LevelIIIInitial LevelIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Part : sol ⁿ	: I: Standar	disatior	n of NaOH	Part – II:	Titrable Acidity (Industrial Me	of Milk/ Lassi thod)
	NaOH	V/S	$H_2C_2O_4$	We have		
	N_1V_1	=	N_2V_2	Set	Volume /	Titration
	N ₁ x X	=	0.1 x 25		Mass of milk	Reading
	N ₁	=	<u>0.1 x 25</u>	Ι	W =g	V ₁ =ml
			Х	II	W =g	V ₂ =ml
		=	.N NaOH			

Calculation of Titrable Acidity Of Milk/Lassi -

Calculate the titrable acidity of milk/ lassi in terms of % of Lactic acid using the relation -

1000 ml ≡ 1 N NaOH	≡ 90.0 g lactic acid		
Set : I :	Set : II :		
\therefore Tritable acidity = <u>9 xV₁ x N₁</u> % Lactic acid	\therefore Tritable acidity = $9 \times V_2 \times N_1$ % Lactic acid		
W	W		
Where: V_1 = Titration reading Set –I	Where: V_2 = Titration reading Set –II		
$N_1 = Normality of NaOH$	$N_1 = Normality of NaOH$		
W= Mass of milk/lassi in g.	W= Mass of milk/lassi in g.		

Result :

1	Volume of supplied NaOH required for	X=ml
	25 ml 0.1N H ₂ C ₂ O ₄	
2	The Titrable acidity of Milk / Lassi	Set I = % lactic acid
		Set II = % lactic acid

17. Chemical Oxygen Demand of Industrial Effluent

: Aim Determination of Chemical Oxygen Demand (C.O.D.) of the given Sample of industrial effluent using 0.1 N FeSO₄ (NH₄)₂SO₄ solution

Chemicals: 1.Given Sewage/ Industrial effluent sample, 5. Conc. H₂SO₄

- 2. Conical flask with reflux condenser
- 3.HgSO₄ crystal
- 4. Ag₂SO₄ crystal

7. Standard 0.1N F. A.S.

6. 0.25 N K₂Cr₂O₇ solⁿ

8. Ferroin indicator

Chemical Oxygen Demand (COD) is a measure of oxygen consumed during Theory: the oxidation of the oxidisable organic matter by a strong oxidizing agent, K2Cr2O7 in presence of H₂SO₄ which is generally used as an oxidizing agent in determination of C.O.D.

The sample is refluxed with K₂Cr₂O₇ and H₂SO₄ in presence of mercuric sulphate to neutralize the effect of chlorine and silver and Ag₂SO₄ (catalyst). The excess of

K₂Cr₂O₇ is titrated against ferrous ammonium sulphate using **ferroin as an indicator**. The amount of $K_2Cr_2O_7$ used is proportional to the oxidisable organic matter in sample. C.O.D. of water or industrial effluent is calculated in terms of grams or ppm of oxygen.

Procedure: A) **Back Titration :**

To the sample of industrial effluent supplied in 250 ml conical flask add 10 ml of 1) 0.25N K₂Cr₂O₇ solution and a few glass beads. 2) Then add slowly and in small portions at a time, with shaking 30 ml of conc. H_2SO_4 . 3) Now add 10 mg H_qSO_4 and 10 mg Ag₂SO₄ crystals and shake well. Reflux the flask for two hours using water 4) condenser. 5) Cool & add 50 ml distilled water and 3-4 drops of ferroin indicator. Shake well. 6) Titrate this whole solution containing excess of K₂Cr₂O₇ against 0.1 N FeSO₄ $(NH_4)_2SO_4$ solution. 7) End point is blue green to wine-red. 8) Note this reading as 'Y' ml.

B) **Blank Titration:**

1) Pipette out 25 ml distilled water in another 250 ml conical flask 2) Add 10 ml 0.25 N K₂Cr₂O₇ solution and add a few glass beads. 3) Then add slowly and in small portions at a time with shaking, 30 ml of conc. H_2SO_4 . 4) Now add 10 mg HgSO₄ and 10 mg 5) Reflux the flask for two hours using water Ag_2SO_4 crystals and shake well. condenser. 6) Cool & add about 50ml distilled water and 3-4 drops of ferroin indicator & Shake well. 7) Titrate this whole solution against 0.1 N FeSO₄. (NH₄)₂SO₄ solution. 8) End point is blue-green to wine-red. 9) Note this reading as X ml. 10) Ask for volume of supplied sample V ml and its dilution factor (Df).

Observations : Back titration :

unau		
1)	In burette	:
2)	In conical flask	:
3)	Indicator	:
4)	End point	:

Reaction :

 $K_2Cr_2O_7+6FeSO_4.(NH_4)_2SO_4+7HgSO_4 \rightarrow$

Blank titration :

- 1) In burette
- 2) In conical flask
- 3) Indicator
- 4) End point

```
÷
Reaction :
             As in back titration
```

Observations:

1	Sample dilution factor (Df)	:
2	Volume of sample supplied	: V =ml
3	Back titration reading	: Y =ml
4	Blank titration reading	: X =ml

2

:

2

0.1 N FeSO₄.(NH₄)₂SO₄ solution Refluxed sample solution Ferroin Blue-green to wine-red.

 $K_2SO_4+Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 +$ $6(NH_4)_2SO_4 + 7H_2O_1$

0.1 N FeSO₄. (NH₄)₂SO₄ solution Refluxed sample solution Ferroin Blue-green to wine-red.

<u>30</u>

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart					
5	Difference of Blank and Back readings	: (X-Y)= (NH ₄) ₂ SO ₄	ml	0.1N	FeSO ₄
6	Given sample	: = ml.			

Calculations : Calculate C.O.D of the sample using following relation.

1 ml 0.1 N FeSO₄. $(NH_4)_2SO_4$ solution = 0.8 mg of oxygen

 $\therefore C.O.D of given sample = (X-Y) x Equivalent wt of O_2 x Normality of FAS x 1000 x Df.$

ml of sample take (V)
=
$$(X-Y) \times 8 \times 0.1 \times 1000 \times Df.$$

V
= $(X-Y) \times 800x Df.$ mg/dm³
V

Results:

1)	Given sample requires(X-Y)	=ml 0.1N FeSO ₄ (NH ₄) ₂ SO ₄ solution
2)	C.O.D. of sample	= mg/dm ³

C) ION EXCHANGE METHOD OF SEPERATION

18. ESTIMATION OF MAGNESIUM AND ZINC BY ION EXCHANGE METHOD

Aim : To determine the amount of magnesium and zinc in the given solution containing $[Mg^{2+} + Zn^{2+}]$ using anion exchange resin by complexometric titration.

Chemicals :

- 1. 0.01 M EDTA solution
- 2. Eriochrome black –T indicator
- 3. Ammonia buffer, pH 10
 - 7. Strong base anion exchange resin Amberlite IR- 400 provided in ion exchange

column in chloride form.

8. 100 ml volumetric flask containing given solution of $[Mg^{2+} + Zn^{2+}]$ in 2N HCl.

Apparatus : 1. Ion exchange column

3. Conical flask

2. Pipettes (10 ml,25 ml)

4. Volumetric flask 250 ml

5. Measuring cylinder 50 ml/100 ml 6. Volumetric flask 250 ml **Theory** : Ion exchange chromatography is technique of separation in which exchange of ions having similar charges takes place between solid phase, exchange resin and solution. Ions are separated on the basis of their differential migration and estimated separately. When solution of $[Mg^{2+} + Zn^{2+}]$ ions is passed through anion resin column, Zn^{2+} ions are adsorbed on resin column while Mg^{2+} ions remain in effluent which are estimated titramitcally with EDTA.

Here the element Magnesium is belonging to alkaline earth metal, while Zinc is transition metal. In weak chloride medium (2M HCl) alkaline earth metals will be present in the solution in cationic forms [e.g. Mg^{2+}], whereas the transition

- 4. 2 N NaOH
 - ~ 2 N NaOH
- 5. 2N HCl
- 6. 0.25N HNO₃

metals will be present in anionic forms [e.g. $ZnCl_4^{2-}$]. Hence only Zn^{2+} ions are adsorbed on anion resin, while Mg^{2+} passes through the effulant.

Procedure :

Part I: Separation of Mg²⁺ & Zn²⁺

SEPARATION OF Mg²⁺

- i) Dilute the given solution to 100 ml with 2N HCl.
- ii) Wash the ion exchange column with (a) 50 ml distilled water

(b) 50 ml of 0.25 N HNO₃

(c) 50 ml 2N HCl and

(d) 50ml distilled water.

Drain the liquid from the column to almost bed level, keeping it about 1 cm above the surface of resin (Throw away washing)

- iii) Adjust a clean 250 ml volumetric flask to collect the effluent of Mg^{2+} .
- iv) Now pipette out 10 ml of diluted $[Mg^{2+} + Zn^{2+}]$ solution and transfer it to the top of resin column.
- v) Adjust the flow of effluent at the rate of 3-5 ml per minute and collect it in 250 ml volumetric flask. Wash the column with about 50 ml 2N HCl and entire effluent in the same measuring flask at the same rate and thus get all the Mg²⁺ separated out.
- vi) Dilute this effluent to 250 ml with distilled water shake well and use this solution to estimate Mg^{2+} .

SEPARATION OF Zn²⁺

- vii) Adjust clean 250 ml standard 250 volumetric flask to collect next effluent of Zn^{2+} ions.
- viii) Now wash the column with 50 ml distilled water and then with 50 ml of 0.25 N HNO₃ (elute) and collect the all effluent [washing + elute] at the rate of 3 to 5 ml per minute in same 250 ml volumetric flask.
- ix) Dilute the effluent solution to 250 ml with distilled water and use this solution to estimate Zn^{2+} .

Part II: Estimation of Magnesium

- i) Pipette out 25 ml of diluted effluent in conical flask, add one piece of red litmus and neutralize excess HCl by adding drop wise 2N NaOH by **common burette** with shaking till litmus becomes just blue.
- ii) Now add ammonia buffer (3/4 T.T.) and 3-4 drops or pinch of Eriochrome black-T indicator and titrate this solution against 0.01 M EDTA till the colour changes form wine red to sky blue.

iii) Take three reading and note C.B.R. as X ml.

Part III : Estimation of Zinc

- Pipette out 25 ml diluted effluent in conical flask, add piece of red litmus and neutralize excess HNO₃ by adding drop wise 2N NaOH by common burette with shaking till litmus becomes just blue.
- ii) Now add ammonia buffer (3/4 T.T.) and 3-4 drops or pinch of Eriochrome black-T indicator and titrate with 0.01M EDTA till colour changes form wine red to sky blue.
- iii) Take three reading and note C.B.R. as Y ml.

OBSERVATIONS & OBSERVATION TABLE

Part I : Separation of Magnesium and Zinc :

1.	Given solution of $[Mg^{2+} + Zn^{2+}]$ diluted to	100 ml
2.	Amount of given dil.solution used for ion exchange separation	10 ml

Calculations :	
Part II: Estimation of Magnesium	Part III : Estimation of zinc
From the above equation we get	From the above equation we get
$Na_2H_2EDTA = Mg^{2+}$	Na ₂ H ₂ EDTA = Zn^{2+}
1000 ml 1M EDTA = 1 mole of Mg^{2+}	1000 ml 1M EDTA = 1 mole of Zn^{2+}

2+
2+
_
) g
g

Results :

1.	25 ml diluted effluent sol ⁿ containing Mg ²⁺	Х	=ml
	ions required 0.01 M EDTA sol ⁿ		
2.	25 ml of diluted effluent sol ⁿ containing	Y	=ml
	Zn ²⁺ ions required 0.01 M EDTA sol ⁿ		
3.	Quantity of Mg ²⁺ in the given sol ⁿ	= C =g	=x 10 ⁻³ kg
4	Quantity of Zn^{2+} in the given sol ⁿ	= F =g	= x 10 ⁻³ kg

19. ESTIMATION OF SODIUM BY ION EXCHANGE METHOD

AIM: To determine the amount of sodium present in the given sample of common salt, using cation exchange resin followed by acid-base titration.

CHEMICALS: 1. Strongly acidic cation exchange resin Amberlite IR- 120 provided in ion exchange column in H form.

2. Stock solution of common salt in 100 cm³ measuring flask.

3. 0.05N NaOH solution. 4. Phenolphthalein indicator 5. Distilled Water.

APPARATUS: 1.Ion exchange column, 2. Burette, 3. Pipettes(10 and 25 cm³)

4. Conical Flask, 5. Funnel, 6. Beakers,

7. 100 and 250 cm^3 , standard measuring flasks etc.

Theory : When common salt solution free from other cations, is passed through a strongly acidic cation exchange resin(in hydrogen form), an equivalent amount of H^+ ions are displaced by sodium ions from the given solution. The displaced H^+ ion solution can be titrated against standard solution of strong base which gives the amount of sodium present.

POCEDURE:

Part –A: Separation of sodium ion using cation exchanger :-

1. Dilute the given stock solution of common salt with distilled water up to 100 mL mark in measuring flask. 2. Wash the ion exchange column with 100 mL distilled

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart

water to remove the acid present in column if any. 4. Drain the column and adjust the liquid level 1 cm above the resin bed. 5. Adjust the clean 250 cm³ standard measuring flask to collect the effluent from column. 6. Pipette out 10 cm³ of diluted salt solution and transfer it quantitatively to the top of the column. 7.Adjust the flow rate of the effluent at 4-5 mL per min and collect the effluent in 250 cm³ standard measuring flask. 8. Now wash the column with 100 cm³ distilled water maintaining the same flow rate and collect the washing (Effluent) in the same measuring flask. 9. Dilute the effluent up to 250 cm³ mark with distilled water.

Part- B: Estimation of Sodium:-

1. Fill the burette with 0.05 N NaOH by taking usual precautions. 2. Pipette out 25 cm^3 of diluted effluent in a conical flask, add to it 2-3 drops of Phenolphthalein indicator and titrate it against 0.05N NaOH till colour changes colourless to pink. 3. Find out CBR and say it is 'X' cm³

OSERVATIONS:

Dort A.	Sanaration	of codium	ion using	option (vohongor	•
I all -A.	Separation	of Soulain	Ion using	cation	Exchangel	•-

1.	Given salt solution diluted to	100 ml
2.	Amount of given diluted solution used for ion	10 ml
	exchange separation	
3.	Effluent solution diluted to	250 ml
4.	Diluted effluent solution used for estimation	25ml

Part- B: Estimation of Sodium:-

1. Solution in burette

2. Solution in conical flask - 25 cm³ diluted effluent solution.

- 3. Indicator Phenolphthalein
 - Colourless to pink
- **Observation Table:**

4. End point

As per previous experiments $CBR = X = \dots cm^3$

REACTIONS:

 $NaCl + Res^{-}H^{+} \longrightarrow Res^{-}Na^{+} + H^{+}Cl^{-}$

 $H^+Cl^- + NaOH \longrightarrow NaCl + H_2O$

CALCULATIONS:

• We have $CBR = X = \dots cm^3$

25 cm^3 of dil. effluent solution	= $X \text{ cm}^3$ of 0.05 N NaOH solution.
Therefore, 250 cm ³ dil. effluent solution	= $X \times 10 \text{ cm}^3 \text{ of } 0.05 \text{ N NaOH Sol}^n$
i.e. 10 cm ³ of diluted salt solution	= $X \times 10 \text{ cm}^3$ of 0.05 N NaOH solution
Therefore, 100 cm ³ of dil. salt solution	= X x 10 x 10 cm ³ of 0.05 N NaOH sol ⁿ
	= X x 100 cm ³ of 0.05 N NaOH sol ⁿ

S.S.M.Barshi. B.Sc. III – Inorganic Chemistry Practical Chart

A) Amount of Sodium in the given salt solution: Now,

	1 cm ³ of 0.05N NaOH solution	=	0.00115 g	of sodium
Theref	ore,100 cm ³ of 0.05N NaOH solution	=	0.00115 x	100 x X g of Sodium.
	i.e. A	=		. g of sodium.
]	B) Amount of Sodium Chloride in the set of the set o	he g	iven salt s	olution :
Now,	1 cm ³ of 0.05N NaOH solution	=	0.002921 g	g of Sodium chloride
	2			

Therefore,100 cm³ of 0.05N NaOH solution = 0.002921 x A g of NaCl.i.e. B =g of Sodium chloride

RESULTS :

1.	25 cm ³ of diluted effluent solution required(X) cm ³ of 0.05N NaOH solution.	$X \text{ cm}^3 =$	cm ³
2.	Quantity of Sodium in the given salt sample solution	$\begin{array}{rcl} A g & = \\ A x 10^{-3} kg \\ & = \end{array}$	g x 10 ⁻³ kg
3.	Quantity of Sodium chloride in given sample solution	$B g = B x 10^{-3} =$	g x 10 ⁻³ kg

SHRI SHIVAJI MAHAVIDYALAYA, BARSHI DEPARTMENT of CHEMISTRY B. Sc. I Practical Chart

INDEX

Sr. No.	Name of Experiment	Page No.			
	A) PHYSICAL CHEMISITRY				
1.	Chemical Kinetics No.1	03			
2.	Chemical Kinetics No.2	03			
3.	Chemical Kinetics No.3	04			
4.	Viscosity	06			
5.	Equivalent Weight of Mg	07			
6.	Heat of Ionization	08			
	B) INORGANIC CHEMISTRY	•			
	Inorganic Quantitative Analysis				
7.	Volumetric Analysis – I	10			
	H ₂ C ₂ O ₄ versus NaOH				
8.	Volumetric Analysis – II	11			
	KMnO ₄ versus H ₂ C ₂ O ₄				
9.	Volumetric Analysis –III	13			
	$K_2Cr_2O_7$ versus F.A.S.				
	Inorganic Qualitative Analysis				
10.	Spot Tests of Basic Radicals	14			
11.	Chromatography	16			
	Inorganic Preparations				
12.	Preparation of ferrous ammonium sulfate	18			
	C) ORGANIC CHEMISTRY				
	Organic Quantitative Analysis				
13.	Estimation of Aniline	19			
14.	Estimation of Amide	21			
15	Estimation of Aspirin	23			
	Organic Preparation				
16.	Preparation of Benzoic acid	25			
Organ	Organic Qualitative Analysis (Organic Spotting)				
17.	Identification of organic compounds	26			

CONTENTS

Sr No.	Nar	Date	Page No.	Remark	
	A) PHYSICAL CHEMISITRY				
1	Chemical Kinetics No.1				
	To investigate the hydrogeneous presence of 0.5 N HCl	rolysis of given methyl acetate in			
2	Chemical Kinetics N	0.2			
	To investigate the hydrogeneous terms of 0.5 N H ₂ S				
3	Chemical Kinetics N	0.3			
	To investigate the reac solutions with equal co	tion between $K_2S_2O_8$ and KI procentrations of the reactants.			
4	Viscosity				
	To determine the visco	sities of given liquids A and B			
5	Equivalent Weight of	[°] Mg			
	To determine the equiv metal by hydrogen dis	valent weight of given magnesium placement method using eudiometer.			
6	Heat of Ionization				
	To determine the heat	of ionization (Δ Hi)of weak acid			
	B) INORGA	NIC CHEMISTRY			
	Inorganic Qu	antitative Analysis			
7	Volumetric Analysis	-I: H ₂ C ₂ O ₄ versus NaOH			
	determine the strength solution in terms of no	of sodium hydroxide ($H_2C_2O_4$) and of sodium hydroxide (NaOH) rmality & kg/dm ³ .			
8	Volumetric Analysis	– II : KMnO4 versus H ₂ C ₂ O ₄			
	To prepare standard so the strength of potassiu in terms of normality &	lution of oxalic acid and determine im permanganate (KMnO ₄) solution & kg/dm ³ .			
9	Volumetric Analysis	-III: K ₂ Cr ₂ O ₇ versus F.A.S.			
	To prepare standard so	lution of potassium dichromate			
	$(K_2Cr_2O_7)$ and determine among $(K_2Cr_2O_7)$	ne the strength of terrous $F = A S$) solution in terms of			
	normality & kg/dm ³ .				
	Inorganic Q	ualitative Analysis			
10	Spot Tests of Basic R	adicals			
	To detect the basic rad	icals in two solutions given in			
	containers marked as I	. & М.			
	i) Spot Test No. 1	Radical L= Radical M=			
	ii) Spot Test No. 2	Radical L= Radical M=			
	iii) Spot Test No. 3	Radical L= Radical M=			

	iv) Spot T	Yest No. 4 Radical I	_=		
		Radical N	/I=		
11	Chromate	ography :			
	You are gi	iven solution containing			
	container	marked K bearing your t	able number		
	i) Separate	e two cations by using pa			
	method	and			
	ii) Identify	the cations and calculat	te R_f values.		
	i) Chron	natography –I: Radic	als&		
	ii) Chron	natography –II: Radio	cals&		
		Inorganic Preparati	ions		
	Preparati	on of ferrous ammoniu	ım sulfate		
12	To prepar	re ferrous ammonium su	lphate (F.A.S.) from		
	ferrous s	ulphate and ammonium	sulphate.		
		C) ORGANIC CHEM	ISTRY		
	Organic Quantitative Analysis				
13	Estimatio				
	To estimat	te the amount of aniline	in the given solution.		
14	Estimatio	n of Amide			
	To estimate solution.	te the amount of acetam	ide in the given		
15	Estimatio	n of Aspirin			
	To estimat	te the amount of aspirin	in the given solution.		
	•	Organic Preparati	on		
16	Preparati	on of Benzoic Acid			
	To prepare	e benzoic acid from benz	zamide		
	Organic (Qualitative Analysis (O	rganic Spotting)		
17	Identifica	tion of organic compo	ınds		
	Org.	Name of Organic	Structural Formula		
	Comp.	Compound			
	No.				
	1				
	2				
	3				
	4				
	5				

A) PHYSICAL CHEMISTRY

1. & 2. Chemical Kinetics No 1 / 2

Aim	: To investigate	hydrolysis of g	given methyl acetate in j	presence of 0.5 N HCl/H ₂ SO ₄
	\mathcal{U}			

Chemicals : 0.1 N NaOH, 0.5 N HCl / H₂SO₄, methyl acetate, ice and phenolphthalein

: Burette, 5ml pipette, stoppered bottles, conical flask, etc. Apparatus

Procedure : Perform the experiment as follows.

1. Take the following solutions in two separate (clean and dry) stoppered bottles. Bottle No. 1 - 5 ml methyl acetate. Bottle No. 2 - 100 ml 0.5 N HCl / H₂SO₄

Keep these two bottles in water bath to attain the same temperature

- 2. Mean while fill the burette with 0.1 N NaOH and take about 100 ml ice cold water or 2-3 ice pieces and two drops of phenolphthalein indicator in conical flask .
- 3. Transfer the solution from bottle No.2 to bottle No.1 completely and shake well. Note the time of mixing and immediately pipette out 5 ml reaction mixture in conical flask containing ice and indicator and titrate it with 0.1 N NaOH solution till colour changes from colourless to pink. Note this reading as T₀.
- 4. Again fill the burette with 0.1 N NaOH solution. Take ice and indicator in conical flask.
- 5. In this way, titrate 5 ml of the reaction mixture after every 10 minutes from the start of the reaction. These readings are called T_t . Ask for T_{∞} reading.
- 6. Calculate the values of k by using formula and plot the graph of log $\frac{a}{a-r}$ Vs time (t). Calculate the value of k by using slope of the graph.

Reaction :

 $CH_3COOCH_3 + H_2O \xrightarrow{HCI/H_2SO_4} CH_3COOH + CH_3OH$

Observations :

- 1. In burette 0.1 N NaOH : 2. In conical flask : Ice + indicator + 5 ml reaction mixture
- 3. Indicator
 - : Colourless to pink :

Observation table:

Given: $T_{\infty} = \dots \dots ml$

 $a = T_{\infty} - T_{\alpha} = ----- ml$

Time in	Titration			<u>a</u>	log_a	$k = \frac{2.303}{10a} a$
minutes	Reading	$x = T_t - To$	a – x	a - x	a - x	$k = \frac{1}{t} \log \frac{1}{a - x}$
t	T _t ml					min ⁻¹
0	$T_0 =$	0.0		1.000	0.0000	
10	$T_{10} =$					
20	T ₂₀ =					
30	T ₃₀ =					
40	$T_{40} =$					
50	$T_{50} =$					
	·	•	•	•	Mean k =	= min ⁻¹

Phenolphthalein

4. End Point

Calculations: Show all details of all calculations. Detail calculation means use of formulae, substitution of values in formulae and calculations by calculator / log table.

Results:

- **1.** Mean k by calculation = ----- \min^{-1}
- **2.** k by graph = ------ min ⁻¹

Conclusion: Values of 'k' obtained by using first order equation are fairly constant and therefore reaction is pseudo-unimolecular.

3. Chemical Kinetics No-3

Aim : To investigate the reaction between K₂S₂O₈ and KI solutions with equal concentrations of the reactants.

Chemical : $0.1 \text{ N K}_2\text{S}_2\text{O}_8$, 0.1 N KI, $0.002 \text{ N N}_2\text{S}_2\text{O}_3$ solution, ice, starch indicator etc.

Apparatus : Burette, 5ml pipette, stoppered bottles, conical flask etc.

- **Procedure** : Perform the experiment as follows
 - Take the following solutions in two separate (clean and dry) bottles. Bottle No. 1 - 20 ml 0.1 N K₂S₂O₈ + 20 ml distilled water Bottle No.2 - 20 ml 0.1 N KI + 20 ml distilled water

Keep these two bottles in a water bath to attain the same temperature.

- 2. Fill the burette with $0.002 \text{ N} \text{ Na}_2\text{S}_2\text{O}_3$ solution.
- 3. Add the solution from bottle No. 2 to 1 completely. Note the time of mixing. The solution is stirred and placed in a water bath throughout the experiment. It is shaken occasionally. (Do not take zero time reading).
- 4. At intervals of 10, 15, 20, 25, 30 and 40 minutes from the mixing time, pipette out 10 ml reaction mixture in the conical flask containing ice pieces and starch indicator. Titrate the reaction mixture against 0.002 N Na₂S₂O₃ solution. The end point will be blue to colourless.
- 5. Calculate the values of k using the formula for a bimolecular reaction.
- 6. Calculate the values of ' a ' and ' b '.
- 7. Plot the graph of 1/(a-x) against time (t). Calculate the value of k from the graph.

Observations :

1.	In Burette	:	$0.002 \text{ N } \text{Na}_2\text{S}_2\text{O}_3$
2.	In Conical flas	sk:	Ice + Indicator + 10 ml reaction mixture
3.	Indicator	:	Starch (8 to 10 drops)
4.	End point	:	Blue to colourless

Calculation of the initial concentration (a and b)

Normality of K ₂ S ₂ O ₈ in mixture:	Initial concentration of $K_2S_2O_8$ (a) in terms
$K_{2}S_{2}O_{8} \text{ (original) } Vs K_{2}S_{2}O_{8} \text{ (in reaction mix.)}$ $N_{1}V_{1} = N_{2}V_{2}$ $0.1 \times 20 = N_{2} \times 80$ $N_{2} = \frac{0.1 \times 20}{80}$ $N_{2} = 0.025 \text{ N}$	0.002 N Na₂S₂O₃ solution: $K_2S_2O_8$ (in reaction mix.) <i>Vs</i> 0.002N Na ₂ S ₂ O ₃ sol ⁿ $N_2V_2 = N_3V_3$ $0.025 \times 10 = 0.002 \times V_3$ $V_3 = \frac{0.025 \times 10}{0.002}$ $V_3 = 125$ \therefore a = V ₃ = 125 ml

As the normality and volume of KI using is same as that of $K_2S_2O_8$ hence the initial concentration of KI (b) in terms of 0.002 N Na₂S₂O₃ is 125 ml, therefore a = b = 125 ml

Observation table:

	$a = 125 \text{ ml } Na_2S_2O_3$		b = 125	ml $Na_2S_2O_3$
Time in min	Titration reading	a – x	1	$k = \frac{X}{1}$
't'	ʻx' ml		$\overline{a-x}$	ta (a – x)
				lit. mol ⁻¹ min ⁻¹
10				
15				
20				
25				
30				
40				
			Mean k =	lit. mol ⁻¹ min ⁻¹

4. Viscosity

Aim : To determine the viscosity of given liquids A and B

Chemicals : Drying liquid:-acetone, pure liquid: – A and B, distilled water etc.

Apparatus : Ostwald's viscometer, dryer, stop watch.

Procedure

:

- 1. Viscometer is washed with acetone and dries it by passing current of air using dryer. Attach piece of rubber tube to the narrow arm of viscometer and clamp it in a perfectly vertical position.
- 2. Introduce, required volume of liquid 'A' into the viscometer, Suck the liquid 'A' by means of rubber tube till it raises little above the upper mark.
- 3. Allow the liquid to flow through the capillary tube into the lower bulb. Start the stop watch when liquid level just passes the upper mark and stop it when just reaches the lower mark. Note down the time in seconds. i.e. time required for the flow of liquid from upper to lower mark.
- 4. Repeat the measurement of time of flow three times and take the mean reading as the time of flow.
- 5. Remove liquid A from viscometer, rinse it with acetone and dry it.
- 6. Rinse viscometer with liquid B and introduce the same volume of liquid B and determine the time of flow as explained above.
- 7. Repeat this procedure for distilled water. Ask for the densities of liquids A,B and viscosity of distilled water.

Liquid		Time of flo	Density	Viscosity		
	I II III Mean (t)				(u)	Ψ
А						
В						
Distilled water					1.00	8.91

Observation table:

Calculation : Calculate the viscosity of the liquid by using formula.

Where: -	η_1 = Viscosity of distilled water (8.91) η_2 = Viscosity of liquid A or B. d_1 =Density of distilled water (1.00) d_2 = Density of liquid A or B. t_1 = Time of flow for distilled water
	$t_2 =$ Time of flow for liquid A or B.
	Where: -

Result :

1. Viscosity of liquid (A) = millipoise

2. Viscosity of liquid (B) = millipoise

5. Equivalent weight of Mg

- **Aim** : To determine the equivalent weight of given magnesium metal by hydrogen displacement method using eudiometer.
- **Apparatus** : Eudiometer, hydrometer jar, crucible, water bath etc.

Chemicals : Two Mg metal pieces, concentrated HCl etc.

Procedure

- 1. Clean the magnesium metal pieces with sand paper and weigh it accurately. (Weight should be about 0.030 to 0.050 g).
- 2. Take about 15 ml concentrated HCl in graduated eudiometer and then fill it completely with water.
- 3. Invert the eudiometer in water bath by closing the mouth of eudiometer with right hand thumb.
- 4. Now roll the weighed metal piece and insert carefully in the mouth of eudiometer. Magnesium reacts with HCl and hydrogen gas begins to evolve and gets collected at the upper part of eudiometer by displacing diluted acid. When reaction is over wait for some time to allow gas in the eudiometer to attain room temperature.
- 5. Insert a crucible below the mouth of eudiometer and introduce it in hydrometer jar (tall cylinder filled with water).
- 6. Equalize the levels of water in eudiometer and hydrometer by raising or lowering the eudiometer. This will make the pressure of moist hydrogen gas in eudiometer equal to atmospheric pressure. Now record the volume of gas i .e. V_1 ml at room temperature.
- 7. By using same procedure record the volume of gas collected for another magnesium piece.

Observation table:

Sr.	Wt of the	Volume of H ₂	Volume of H ₂	Volume for 0.1 gm of metal	Equivalent		
No	Metal	evolved at R.T.	evolved at N.T.P	$V_0 \times 0.1$	Weight of		
	(W gm)	(V_1) ml	(Vo) ml	= <u></u>	metal		
1							
2							
	Mean equivalent weight of metal =						

Reaction : Mg + 2 HCl \longrightarrow MgCl₂ + H₂

Calculations : Give calculations in detail

1. Volume of gas reduced to NTP:

$$\frac{P_0 V_0}{T_0} = \frac{P_1 V_1}{T_1}$$
$$V_0 = \frac{P_1 V_1 T_0}{T_1 P_0} = ----ml$$

Where,

$$P_0 = 760 \text{ mm}$$

 $T_0 = 273 \text{ K}$
 $P_1 = P - p = ----- \text{ mm}$

Equalized water level in jer with solution in eudiometer

2. Volume for 0.1 gm of metal = $\frac{V_0 \times 0.1}{W}$

3. Equivalent weight of metal which liberates

11,200 ml of pure and dry H₂ at NTP.

 $: V_0$ ml is volume of H₂ at NTP displaced by W gm metal

 \therefore 11,200 ml of H₂ at NTP will be displaced by the metal = Equivalent weight

Equivalent weight = $\frac{11200 \times W}{V_0}$

Results: Mean equivalent weight of magnesium metal = ------

6. Heat of ionization

- **Apparatus** : Beakers, $\frac{1}{10}$ thermometer, measuring cylinder, polythene bottle etc.
- **Chemicals** : Z N strong acid (HCl), Z N strong base (NaOH), Z N weak acid (CH₃COOH).

Procedure : Perform the experiment in two parts:

Part A: Heat of neutralization of strong acid (HCl) by strong base (NaOH) i.e. ΔH_1 :

- 1. Take 100 ml of given strong base (NaOH) in a polythene bottle and record its temperature $(t_1 {}^{0}C)$
- 2. Take 100 ml given strong acid (HCl) in a beaker and record its temperature (t_2^0C). Mean of the two temperatures is taken as initial temperature (t^0C). Then add the acid carefully to base in polythene bottle, stir the mixture well and record the maximum steady temperature (t_3^0C).

Part B: Heat of neutralization of weak acid (CH₃COOH) by strong base (NaOH) i.e. ΔH₂:

- 1. Take 100 ml of given strong base (NaOH) in a polythene bottle and record its temperature $(t_1$ $^{0}C)$
- 2. Take 100 ml given weak acid (CH₃COOH) in a beaker and record its temperature (t_2^{0} C). Mean of the two temperatures is taken as initial temperature (t⁰C). Then add the acid carefully to base in polythene bottle, stir the mixture well and record the maximum steady temperature $(t_3^{0}C)$.

Observations:

Part A: Heat of neutralization of strong acid (HCl) by strong base (NaOH) i.e. ΔH_1 :

Vol. of	Temp of	Temp of	Initial temp (t ⁰ C)	Temp of	Rise in	Heat of
acid +	base $(t_1 {}^0C)$	acid $(t_2^0 C)$	$t_{1} + t_{2}$	mixture	temp	neutralization
base			$\iota = \frac{1}{2}$	(t ₃ ⁰ C).	$\Delta t = t_3 - t$	ΔH_1 cal
200 ml						

Part B: Heat of neutralization of weak acid (CH₃COOH) by strong base (NaOH) i.e. ΔH₂:

Vol. of	Temp of	Temp of	Initial temp (t ⁰ C)	Temp of	Rise in	Heat of
acid +	base $(t_1 {}^0C)$	acid $(t_2^0 C)$	$t_{1} + t_{2}$	mixture	temp	neutralization
base			$l = \frac{1}{2}$	$(t_3 {}^0C)$	$\Delta t = t_3 - t$	ΔH_2 cal
200 ml						

Given : 1.	Water equivalent of polythene bottle $(W) = 0.0$ cal.
------------	---

2. Normality of acid or base (Z) = -----N

Calculations :

a) Heat evolved (Q) & heat of neutralization (ΔH_1) for Part A:

Heat evolved (Q) = $(200 + W) \Delta t$ = ----- cal.

Heat of neutralization (ΔH_1) = $\frac{10 \times Q}{7} = ----cal$.

b) Heat evolved (Q) & heat of neutralization (ΔH_2) for Part B:

Heat evolved (Q) =
$$(200 + W) \Delta t$$
 = ------ cal.
Heat of neutralization (ΔH_2) = $\frac{10 \times Q}{Z}$ = ----- cal.

= + (-----) joules.

c) Heat of ionization (Δ Hi) of weak acid:

 $\Delta Hi = \Delta H_2 - \Delta H_1 = ----- cal.$

= ----- joule

(1 cal = 4.184 joules)

Result : 1. $\Delta H_1 = -$ (-----) cal. 2. $\Delta H_2 = -$ (-----) cal. 3. $\Delta Hi = +$ (-----) cal.

B) INORGANIC CHEMISTRY

INORGANIC QUANTITATIVE ANALYSIS

7. Volumetric Estimation-I: H₂C₂O₄ versus NaOH

Aim : To prepare standard solution of oxalic acid and determine the strength of sodium hydroxide (NaOH) solution in terms of normality & kg/dm³.

Apparatus: Volumetric flask (250 ml), beaker, blass rod, funnel, watch glass, burette, pipette, conical flask.

Chemicals : 1.Oxalic acid 2. water 3. NaOH solution 4. phenolphthalein indicator

Procedure :

Part A: Determination of equivalent weight of oxalic acid and preparation of standard solution

Molecular weight of oxalic acid is 126 and its basicity is 2

$$\therefore \text{ Eq. wt. of oxalic acid } = \frac{\text{Molecular Weight}}{\text{Basicity}} = \frac{126}{2} = 63$$

: Equivalent weight of oxalic acid is 63, now for preparing

1000 ml ---- 1 N oxalic acid solution \cong 63 g of oxalic acid

1000 ml ---- 0.1 N oxalic acid solution \cong 6.3 g of oxalic acid

250 ml ---- 0.1 N oxalic acid solution
$$\approx \frac{250 \times 0.1 \times 63}{1000} = 1.575 \text{ g}$$

Weigh accurately 1.575 g of oxalic acid on watch glass, dissolve it in 50 to 75 ml of distilled water in a beaker by stirring with glass rod and transfer the solution to 250 ml volumetric flask. Rinse the beaker and glass rod 4 -5 times with distilled water and transfer the washing to the flask. Dilute the solution up to mark with distilled water and shake well.

Part B: Determination of normality and strength of NaOH

Rinse and fill the burette with sodium hydroxide solution up to zero mark .Pipette out 25 ml of oxalic acid solution in a conical flask and add 2-3 drops of phenolphthalein indicator. Add NaOH solution from the burette with constant shaking. Go on adding NaOH solution until a faint permanent pink colour is obtained and note the burette reading, repeat the titration for two more readings.

Observations:

Part A

1. Wt. of empty watch glass (W_1)	=	g
2. Wt. of oxalic acid taken (W_2)	= 1.575	g

2. Wt. of oxalic acid taken
$$(W_2) = 1.5$$

$$W=(W_1+W_2) = \ldots g$$

Part B	
1. In burette	: 0.1 N NaOH solution
2. By pipette	: 25 ml oxalic acid solution
3. Indicator	: phenolphthalein
4: End point	: colourless to faint
	permanent pink

Reaction: $H_2C_2O_4 + 2$ NaOH \rightarrow Na₂C₂O₄+ 2H₂O

Observation table:

Burette level	Burette reading in ml			C.B.R
	Ι	II	III	
Final level				
Initial level	0.0	0.0	0.0	X = ml
Difference				

Calculations : $C.B.R. (X) = \dots ml$

a) Normality of given NaOH

b) Strengh of given NaOH

Oxalic acid Vs NaOH $N_1V_1 = N_2 V_2$ $0.1 \ge 25 = N_2 \ge 3X'$ $N_2 = \frac{0.1 \times 25}{X}$

Strength of given NaOH = Normality x equivalent weight of NaOH = N x 40 =Z = g/dm³ \therefore Strength of NaOH = Z x 10⁻³ kg/dm³

RESULTS	: 1. Normality of given NaOH solution	= N.
	2. Strength of NaOH (Z)	= g/dm ³
	3. Strength of NaOH (Z x 10^{-3})	= x 10 ⁻³ kg/dm ³

8. Volumetric Analysis-II: KMnO₄ versus H₂C₂O₄

Aim : To prepare standard solution of oxalic acid and determine the strength potassium permanganate (KMnO₄) solution in terms of normality & kg/dm³.

Chemicals: Given KMnO₄ solution, oxalic acid crystalline, dilute H₂SO₄, distilled water.

Procedure : Part A: Determination of equivalent weight of oxalic acid and preparation of standard solution

Molecular weight of oxalic acid is 126 and its basicity is 2 \therefore Eq. wt. of oxalic acid $= \frac{\text{Molecular weight}}{\text{Basicity}} = \frac{126}{2} = 63$ \therefore Equivalent weight of oxalic acid is 63, now for preparing 1000 ml ---- 1 N oxalic acid solution \cong 63 g of oxalic acid 1000 ml ---- 0.1 N oxalic acid solution \cong 6. 3 g of oxalic acid 250 ml ---- 0.1 N oxalic acid solution $\cong \frac{250 \times 0.1 \times 63}{1000} = 1.575 \text{ g}$

Weigh accurately 1.575 g of oxalic acid on watch glass, dissolve it in 50 to 75 ml of distilled water in a beaker by stirring with glass rod and transfer the solution to 250 ml volumetric flask. Rinse

the beaker and glass rod 4-5 times with distilled water and transfer the washing to the flask. Dilute the solution up to mark with distilled water and shake well.

Part B: Determination of normality and strength of KMnO₄

Rinse and fill the burette with potassium permanganate solution up to zero mark ,pipette out 25 ml of oxalic acid solution in a conical flask and add to it one test tube of dilute sulphuric acid. Heat this content to 60 to 70 0 C on a boiling water bath . Add KMnO₄ solution from the burette with constant shaking. Go on adding KMnO₄ solution until a permanent faint pink colour is obtained and note the burette reading. Repeat the titration for two more readings.

Observations:

Part A

1. Wt. of oxalic acid taken (W) = 1.575 g

Part B

- 1. In burette : 0.1 N KMnO₄ solution
- 2. By pipette : 25 ml oxalic acid solution
- 3. Indicator : KMnO₄ itself.
- 4: End point : colourless to permanent faint pink

Reaction: $2KMnO_4 + 3H_2SO_4 + 5H_2C_2O_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 10CO_2 \bigstar$

Observation table:

Burette level	Burette reading in ml			C.B.R
	Ι	II	III	
Final level				
Initial level	0.0	0.0	0.0	X =ml
Difference				

Calculations : C.B.R. (X) =ml

a) Normality of given KMnO₄

b) Strength of given KMnO₄

Oxalic acid Vs KMnO₄ $N_1V_1 = N_2 V_2$ $0.1 \ge 25 = N_2 \ge 'X'$ $N_2 = \frac{0.1 \times 25}{X}$

Results:	1. Normality of given KMnO ₄ solution	= N.
	2. Strength of KMnO ₄ (Z)	= g/dm ³
	3. Strength of KMnO ₄ (Z x 10^{-3})	= x 10 ⁻³ kg/dm ³

9. Volumetric Analysis-III: K₂Cr₂O₇ versus [Fe (SO₄)(NH₄)₂ SO₄).6H₂O]

Aim : To prepare standard solution potassium dichromate ($K_2Cr_2O_7$) and determine the strength ferrous ammonium sulphate (F.A.S.) solution solution in terms of normality & kg/dm³.

Chemicals: Crystalline K₂ Cr₂ O₇, F.A.S .solution, phosphoric acid-sulphuric acid mix, diphenyl amine, dilute H₂SO₄

Part A: Determination of equivalent weight of K₂Cr₂O₇ & Preparation of 0.1 N K₂Cr₂O₇ solⁿ:

In presence of acid $K_2 Cr_2 O_7$ supplies oxygen according to following equation .

$$K_{2}Cr_{2} O_{7} + 4H_{2}SO_{4} \longrightarrow K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 4H_{2}O + 3(O)$$

i.e. $K_{2}Cr_{2}O_{7} \equiv 3(O) \equiv 6H$
 \therefore Eq. Wt of $K_{2}Cr_{2}O_{7} = \frac{\text{mole. wt. of } K_{2}Cr_{2}O_{7}}{6} = \frac{294.2}{6} = 49.03$

Equivalent weight of K₂ Cr₂ O₇ in acidic medium is 49.03, now for preparing K₂Cr₂O₇ solution

$$1000 \text{ ml} --- 1\text{N } \text{K}_2\text{Cr}_2\text{O}_7 \text{ Solution} = 49.03 \text{ g of } \text{K}_2\text{Cr}_2\text{O}_7$$

$$1000 \text{ ml} --- 0.1 \text{N } \text{K}_2\text{Cr}_2\text{O}_7 \text{ Solution} = 4.903 \text{ g of } \text{K}_2\text{Cr}_2\text{O}_7$$

$$250\text{ml} --- 0.1 \text{N } \text{K}_2\text{Cr}_2\text{O}_7 \text{ Solution} = ?$$

$$= \frac{250 \times 0.1 \times 4.903}{1000 \times 0.1} = 1.226 \text{ g } \text{K}_2\text{Cr}_2\text{O}_7$$

Weigh accurately 1.226g of $K_2 Cr_2 O_7$ crystals on a watch glass. Dissolve it in about 50to 75 ml of distilled water in a beaker and transfer the solution to 250 ml measuring flask .Rinse the beaker and glass rod 4 to 5 times with distilled water and transfer the washing to the flask .Dilute this solution to up to the mark with distilled water and shake well .

Part B: Determination of normality and strength of F.A.S. [Fe(SO₄)(NH₄)₂ SO₄).6H₂O]

Pipette out 25 ml of F.A.S. solution in conical flask, add to it 25 ml **phosphoric acid-sulphuric acid solution** (masking reagent) Add 100 ml of distilled water and then add 3 drops of diphenylamine indicator .Run the dichromate solution in to the flask, go in adding $K_2 Cr_2 O_7$ solution until the green colour changes to grey green, then add dichromate drop wise until the first tinge of purple or violet blue colour appears. Repeat the procedure for 3 times and find out C.B.R.

Observations:

Procedure:

Part A Wt of $K_2Cr_2O_7$ solid $(W_2) = 1.226$ g

Part B

1. In burette = $0.1N K_2 Cr_2 O_7$ solution

2. By pipette = 25 ml F.A.S. (Given)

- 3. Indicator = diphenyl amine (3 Drops)
- 4. End point = green to violet blue

Reactions :

Observation table:

Burette level	Burette reading in ml			C.B.R
	Ι	П	III	
Final level				
Initial level	0.0	0.0	0.0	X= ml
Difference				

Calculations: $C.B.R. (X) = \dots ml$

a) Normality of given F.A.S. solut	ion b) Strength of F.A.S.
F.A.S. Vs $K_2Cr_2O_7$	= Normality x Eq. Wt of F.A.S
$N_1V_1 = N_2V_2$	$= N_1 x 392 = Z g/dm^3$
$\therefore N_1 = \frac{0.1 \times X}{25}$: Strength of KMnO ₄ = Z x 10^{-3} kg/dm ³

Results: 1. Normality of F.A.S. solution = N

 2. Strength of F.A.S.
 (Z) = g/ dm³

 3. Strength of F.A.S (Z x 10⁻³) = x 10⁻³ kg/dm³

INOGANIC QUALITATIVE ANALYSIS

10. Spot Tests of Basic Radicals

Aim: To detect basic radicals from solutions given in two containers marked as L and M. Give the complete report of the test performed.

Note:

e: i) Carry out Confirmatory test. if first test of particular radical is positive.

ii) If first test of particular radical is negative then try for next radical (Show the final tests to the examiner and take his signature on the final test).

iii) The reagent of each test is written above it.

Sr.	REAGENT	OBSERVATION	INFERENCE
No.			
1.	RUBEANIC ACID		
	On drop of original solution (O.S.) on a	a) Blue colour.	Ni ⁺⁺ present
	filter paper + One drop of the reagent and	b) Brown colour.	Co ⁺⁺ present.
	expose it to ammonia	c) Olive green colour.	Cu ⁺⁺ present.
	C.T. For Ni ⁺⁺		
	DIMETHYL GLYOXIME		
	One drop of O.S .on filter paper + One drop	Rose red colour	Ni ⁺⁺ confirmed
	of the reagent and expose it to ammonia		

	C.T. For CO ⁺⁺		
	$\propto -NITROSO \beta - NAPTHOL$	Red brown colour	Co ⁺⁺ confirmed
	One drop of O.S. on filter paper + One drop		
	of reagent		
	C.T. For Cu ⁺⁺		
	<u>CUPRON : (α – Benzoin oxime)</u>		
	One drop of O.S. on a filter paper + One		
	drop of the reagent and expose it to	Green colour	Cu ⁺⁺ confirmed
	ammonia.		
2.	AMMONIUM SULPHOCYANIDE		
	One drop of O.S. on spot plate + One drop	Blood red colour	Fe ⁺⁺⁺ present
	of reagent		1
	POTASSIUM FERROCYNIDE		
	C.T. For Fe ⁺⁺⁺	Deep blue colour	Fe +++ confirmed
	One drop of O.S. on filter paper + One drop		
	of reagent		
3	ALIZARIN		
	One drop of O.S. on filter paper, dry it +	Red colour	Al ⁺⁺⁺ present
	One drop of reagent and expose to		
	ammonia		
	C T For Al ⁺⁺⁺		
	$\frac{1}{2}$ drops of OS on spot plate or in small		
	TT + 1 drop of dil HCl + 4 drops of		
	ammonium acetate $+3$ drops of reagent	Red colour \setminus ppt	Al ⁺⁺⁺ confirmed
	wait for 5 minutes \pm excess of ammonical		
	ammonium carbonate		
4.	P NITROBENZENE AZORESORCINOL		
	(MAGNESON -I)		
	Four drops of O. S in a spot plate + One	Blue ppt . or blue colour	Mg present
	drop of dilute HCI + One drop reagent +		
	Several drops of NaOH.		
	C.T. For Mg ⁺⁺		
	TITAN YELLOW :		
	One drop of O. S in a spot plate + One drop	Pad pat or colour	Ma ++ confirmed
	of reagent $+ 4$ drop of NaOH	Red ppt of colour	Mg commed
5	DILLITE H-SO		
5.	Two drop of O S in a fusion or small test	White ppt or turbidity	Dh ++ present
	tube - One drop of reagant	white ppt. of turbluity	ro present
	tube – One drop of reagent		
	C.T. For Pb ⁺⁺		
	GALLOCYNINE :	Blue or bluish violet ppt	Ph ⁺⁺ confirmed
	One drop of O. S in a spot plate + NaHCO ₃	or colour	
	solution + One drop of reagent		

6.	AMMONIUM MERCURY		
	THIOCYANATE		
	One drop of O. S in a spot plate + one drop	Immediate blue ppt or	Zn ++ present
	of cobalt nitrate + 3-4 drops of ammonium	violet colour	
	mercuric thiocynate and rub with glass rod		
	C.T. For Zn ⁺⁺		
	POTASSIUM FERRICYNIDE AND		
	<u>DIPHENYLAMINE :</u>		
	One drop of O. S in a spot plate + One drop		
	of potassium ferricyanide + One drop of	Green ppt	Zn ⁺⁺ confirmed
	diphenylamine in glacial acetic acid		

Result:

Container	Radical Detected
L	
Μ	

11. Chromatography

- Aim : You are given solution containing two basic radicals in a container marked 'K' bearing your table number. (i) Separate the two cations by using paper chromatography method and (ii) identify the cations and calculate R_f values. give report of the test performed.
- Apparatus: Strips of Whatman paper, cylinder with lid, sharp pencil, glass dropper, sprayer, infrared lamp.

Chemicals: Solvent (mixture of acetone, conc. HCl and distilled water in the ratio 90:5:5), mixture given for separation, Rubeanic acid , dimethyl glyoxime, ammonia.

Procedure:

- 1. Pour about 20 to 25 ml solvent in cylinder and close it with lid.
- 2. Take Whatman paper strip and draw lightly a reference line on it by pencil at 3 cm from one end and make a mark at the centre of reference line .
- 3. Apply drop of given mixture on the centre of reference line, Allow to dry the applied solution by dryer or Infra red lamp . Repeat same procedure for 2 to 3 times.
- 4. Dip the strip in the cylinder taking care that the reference line must be well above the solvent level as
- 5. shown in fig 8(a).
- 6. Allow the solution to run for 45 minutes (distance about 10 to 15 cm from reference line).
- 7. Remove the strip from cylinder and dry it. Mark a solvent front with a dotted line by pencil.
- 8. Detect the radicals by applying the spraying reagent.
- 9. Paste your chromatogram on your answer book/ journal.
- 10. Show the distance travelled by radicals and solvent front as shown in fig. 8 (b).
- 11. Calculate the rate of flow (R_f) values for the detected radicals.

Observation table:

Spraying Reagent	Colour developed	Radicals
Rubeanic acid and expose to	i.Blue	Ni ⁺⁺ present
ammonia.	ii .Yellow orange or yellowish brown	Co ⁺⁺ present
	iii. Olive green	Cu ⁺⁺ present

Calculations:-

R_{f} value = $\frac{Distance travelled by solute radical}{Distance travelled by solvent front}$

1. R_f value for first radical $= \frac{\ell_1}{L} = \dots$ 2. R_f value for second radical $= \frac{\ell_2}{L} = \dots$

(a) Arrangement of apparatus (b) Developed Chromatogram Fig. 8 : Paper Chromatography

Results:

Sr. No.	Name of radical detected	R _f value
1.	First radical	
2.	Second radical	

Inorganic Preparations

12. Preparation of Ferrous Ammonium Sulphate (Mohr's Salt)

Aim	: To prepare ferrous ammonium sulphate (F.A.S.) from ferrous sulphate and
	ammonium sulphate.

- **Chemicals** : Ferrous sulphate (FeSO₄.7H₂O), ammonium sulpahte (NH₄)₂ SO₄, ethanol etc.
- Apparatus : 250 ml Beakers, glass rod, measuring cylinder etc.

Procedure

:

- 1. Weigh 10 g of Ferrous Sulphate and transfer in to beaker. Add in it about 60ml distilled water and 5 ml dil. H₂SO₄, dissolve by boiling the solution.
- 2. Add to it 5g of ammonium sulphate with constant stirring.
- 3. Add a bright iron nail to maintain iron content.
- 4. Boil the solution till the crystallization points is just reached (avoid formation of crystal masses).
- 5. Cool and add about 10 ml ethyl alcohol. Faint green coloured crystals of F.A.S. are obtained.
- 6. Now filter the product on Buchner funnel and wash the product with little alcohol. Dry and weigh the product.

Reaction:

FeSO ₄	+ $(NH_4)_2 SO_4 + 6H_2O$	$ FeSO_4 (NH_4)_2 SO_4 GH_2 O$
Simple s	alt Simple salt	Double salt (F.A.S.)

Calculations:

a) Theoretical yield	b) Percent % yield
From chemical reaction we get	
$FeSO_4.7H_2O = FeSO_4(NH_4)_2SO_4.6H_2O$	Weight of the product = $X = \dots g$
278 392	\therefore 14 g product F.A.S = 100 % yield
278 g Ferrous sulphate = 392 g F.A.S	
$\therefore 10 \text{ g Ferrous sulphate} = \frac{10 \text{ x } 392}{278} \text{ g F.A.S.}$	$\therefore X \text{ g product F.A.S} = \frac{X \times 100}{14} \%$
= 14 g	i.e. B =%
\therefore Theoretical yield of product (A) = 14 g	

Results:

1.	Colour of the product F.A.S.	Faint green	
2	Weight of the product F.A.S.	X = g	=x 10 ⁻³ Kg
3.	Theoretical yield of product	A = g	= x 10 ⁻³ Kg
4.	Practical % yield of product	B = %	

19

C) ORGANIC CHEMISTRY

13. Estimation of Aniline

Aim	: To estimate the amount of aniline in the given solution.
Apparatus	: Burette, 10 ml pipette, conical flask, stoppered bottles etc.
Chemicals	: 0.1 N Na ₂ S ₂ O ₃ solution, brominating solution (0.1 N approx.), aniline solution, 10 %
	KI solution, starch indicator, concentrated HCl.
Principle	: Aniline reacts with bromine which is liberated from the brominating solution to give
	tri- bromo derivative. From the amount of bromine (in terms of iodine (I2) used)
	aniline can be estimated.

Part I: Blank titration

Procedure : Pipette out 10 ml of brominating solution in the conical flask. Add to it 25 ml distilled water, 10-15 ml about 1 test tube of KI solution and 3 ml conc. HCl. Titrate the liberated iodine against the sodium thiosulphate solution using starch as an indicator (10 drops). End point is blue to colourless. Note the burette readings. Repeat the procedure for two more readings and determine constant burette reading as 'X' ml.

Observations :

1.	In burette	:	0.1 N Na ₂ S ₂ O ₃ solution
2.	In conical flask	:	10 ml brominating solution + 25 ml distilled water +
			1 test tube 10 % KI + 3 ml conc . HCl
3.	Indicator	:	Starch (10 drops) or 1 ml
4.	End point	:	Blue to colourless
ble			

Observation table:

Burette level	Burett	C.B.R.		
	Ι	II	III	
Final level				
Initial level	0.0	0.0	0.0	X =ml
Difference				

Part II: Back titration

Procedure : Pipette out 10 ml of brominating solution in a stoppered bottle. Add to it 10 ml aniline solution by pipette, 25 ml distilled water and 3 ml conc. HCl solution. Wait for 10 minutes. Then add about 10-15 ml (about 1 test tube) of 10 % KI solution. Titrate the liberated iodine against 0.1 N sodium thiosulphate solution using starch as an indicator. End point is blue to colourless. Note the burette reading. Repeat the procedure for two more readings and determine the constant burette reading as 'Y' ml.

Observations :

1.	In burette	:	0.1 N Na ₂ S ₂ O ₃ solution
Ζ.	In conical mask	•	10 mi brominating solution + 10 mi annine solution + 25 ml distilled water + 3 ml conc. HCl
			(wait for 10 min.) + 1 T.T. 10 % KI
3.	Indicator	:	Starch (10 drops) or 1 ml
4.	End point	:	Blue to colourless

Observation table:

Burette level	Burett	C.B.R.		
	Ι	Π	III	
Final level				
Initial level	0.0	0.0	0.0	Y=ml
Difference				

Reactions

:

Calculations :

C.B.R of the back titration = Y ml = ----- ml C.B.R of the blank titration = X ml = ----- ml X - Y = V = = ml

-

 $V = \dots m$ is the amount of brominating solution in terms of sodium thiosulphate solution consumed by 10 ml of aniline solution

- - - - -

From the above chemical reactions

~

1 mole of aniline \equiv 3 mole of Br	$_2 \equiv \text{mol}$	e of $I_2 \equiv 6$ mole of $Na_2S_2O_3$
Thus		
6 mole of Na ₂ S ₂ O ₃	≡	1 mole of aniline
∴ 6000 ml 1 N Na ₂ S ₂ O ₃	≡	93 g of aniline
60,000 ml 0.1 Na ₂ S ₂ O ₃	≡	93 g of aniline
$\therefore \ V \ ml \ 0.1 \ N \ Na_2 S_2 O_3$	=	$\frac{V \times 93}{60,000}$ g of aniline in 10 ml solution
i.e.	Z =	g of aniline in 10 ml solution
Strength of aniline in g / L		
10 ml of aniline solution	≡	Z g of aniline
\therefore 1000 ml aniline solution	≡	$\frac{Z \times 1000}{10}$ g of aniline
	=	$Z \times 100$ g of aniline
i.e. Strength of aniline = $Z \times$	100 =	g / L

Strength of aniline in kg / dm³

Strength of aniline in given solution	$= Z \times 100 g/L$
Now strength of aniline in kg/dm ³	$= \frac{Z \times 100}{1000}$
\therefore Strength of aniline in kg / dm ³	$= Z \times 0.1$ $= \dots kg / dm^3$

Results:

1. Strength of aniline	= Z × 100	= g / L
	= Z × 0.1	= kg / dm^3

14. Estimation of Amide

Aim : To estimate the amount of acetamide in the given solution.

Apparatus: 250 ml volumetric flask, conical flask, round bottom flask, burette, pipette (25 ml), sand bath, glass funnel etc.

Chemicals : Given acetamide solution, 1N KOH solution, 0.1 N HCl solution, phenolphthalein etc.

Part I: Back titration

Procedure : To the given solution of acetamide in a round bottom flask, add 25 ml of 1 N KOH solution. Cover the flask with funnel. Heat the flask on sand bath till ammonia gas is evolved completely. (Test with moist turmeric paper i.e. it should not turn brown or red). Cool this solution and transfer the solution to the 250 ml volumetric flask carefully by using funnel. Wash the round bottom flask 2-3 times with distilled water and transfer it to the volumetric flask and dilute the solution up to the mark with distilled water. Shake well the solution. Pipette out 25 ml of this diluted solution in conical flask and titrate against 0.1 N HCl solution using phenolphthalein indicator. End point is pink to colourless. Take three readings and find out C.B.R. Note this C.B.R. as 'Y' ml.

Observation :

- In burette
 In conical flask
 - In conical flask :
 Indicator :
- 0.1 N HCl
- 25 ml diluted reaction mixture by pipette
- : Phenolphthalein (2-3 drops)
- 4. End point : Pink to colourless

Observation table:

Burette level	Burette re	ading in	C.B.R.	
	Ι	II	III	
Final level				
Initial level	0.0	0.0	0.0	Y=ml
Difference				

Part II: Blank titration

Procedure : Pipette out 25 ml of 1 N KOH in to the 250 ml volumetric flask and dilute up to the mark with distilled water. Shake well. Titrate 25 ml of this diluted solution against 0.1N HCl solution by using phenolphthalein indicator. End point is pink to colourless. Take three readings and find out C.B.R and note this C.B.R as 'X' ml

Observation :

1.	In burette	:	0.1 N HCl
2.	In conical flask	:	25 ml dilut

25 ml diluted KOH solution by pipette

3. Indicator : Phenolphthalein (2-3 drops)

4. End point :

Pink to colourless

Observation table:

Burette level	Burette	e reading	C.B.R.	
	Ι	II	III	
Final level				
Initial level	0.0	0.0	0.0	X = ml
Difference				

Reactions:

 CH_3CONH_2 + KOH ------ CH_3COOK + NH_3 KOH + HCI KCI + H₂O

Calculation :

C.B.R of the back titration = Y ml = ----- ml C.B.R of the blank titration = X ml = ----- ml $X - Y = V = \dots - \dots = \dots ml$

 \therefore V ml = ------ ml is the amount of KOH solution consumed during hydrolysis of acetamide in terms of 0.1N HCl solution

KOH solution consumed in terms of 0.1 N HCl for hydrolysis of acetamide in the given solution

= V X 10 ml

=.....ml

From the above chemical reactions,

1 mole of KOH solution	≡	1 mole of acetamide (CH ₃ CONH ₂)
∴ 1000 ml of 1N KOH solut	ion	\equiv 59 g of acetamide.
\therefore 1000 ml of 1N HCl solution	≡	59 g of acetamide
\therefore 1000 ml of 0.1N HCl solution	≡	5.9 g of acetamide
i. e. 10,000 ml of 0.1N HCl solution	≡	59 g of acetamide
\therefore V ml of 0.1N HCl solution	=	$\frac{V \times 59}{10,000}$ g of acetamide
i. e. A	=	g of acetamide in 25 ml of diluted
		solution.
: Amount of acetamide present in 25	0 ml sol	ution = $A \times 10 \text{ g}$
i.e.	В	= g of acetamide.

Results :

1.	KOH solution consumed in terms of 0.1 N HCl	$= V \times 10 ml$	= ml
	solution for hydrolysis of acetamide in the given		
	solution		
2. (Quantity of acetamide in the given solution	$= \mathbf{B} \mathbf{g}$	=g
		$=$ B \times 10 ⁻³ kg	=10 ⁻³ kg

15. Estimation of Aspirin

Aim : To determine the amount of aspirin (Acetyl salicylic acid) from aspirin tablet.

Apparatus: Burette, pipette, conical flask, 250 cc volumetric flask, beakers, watch glass, weight box etc.

Chemicals: Asprin tablet, 0.1 N oxalic acid solution, approximate 0.1 N NaOH solution, Phenolphthalein

Procedure:

A) Preparation of standard oxalic acid solution and standardization of NaOH solution :

I. Preparation of standard oxalic acid solution: Weigh accurately, 1.575 g of oxalic acid on a watch glass and transfer it in a beaker, dissolve it in minimum amount of distilled water and transfer this solution to 250 ml volumetric flask. Dilute the contents up to the mark with distilled water and shake well.

II. Standardization of NaOH solution :

- 1. Clean all the glasswares and rinse with disitilled water .
- 2. Fill the burette with 0.1 N (approx) NaOH solution .
- 3. Pipette out 25 ml exactly 0.1 N oxalic acid solution in conical flask .
- 4. Add phenolphthalein indicator.
- 5. Titrate with NaOH solution till colour changes from colorless to faint pink colour. Repeat the procedure for two more readings and determine CBR as 'a'ml.
- 6. Calculate the normality of NaOH solution . Let the normality be 'X'N.

B) Estimation of Aspirin:

- 1. Weigh the given aspirin tablet accurately on a clean watch glass.
- 2. Transfer it to 250 ml beaker and dissolve in minimum amount of ethyl alcohol (20 ml).
- 3. Transfer this solution to 100 ml volumetric flask and dilute up to mark with distilled water.
- 4. Titrate 25 ml of this diluted solution against X N NaOH solution using phenolphthalein as an indicator till colour changes from colorless to faint pink colour. Repeat the procedure for two more readings and determine CBR as 'b'ml.

Observations and observations table:

А.	Preparation	of standard	oxalic aci	d solution an	d standardizat	tion of NaOH	solution :
----	-------------	-------------	------------	---------------	----------------	--------------	------------

Observations I :	Obseravation Table :				
1. In burette : NaOH solution	Burette	Burette Reading in ml		C.B.R	
2. By pipette : 25 ml 0.1N oxalic acid	Level	Ι	II	III	
solution	Final level				
3. Indicator : Phenolphthalein	Initial level				a =ml
4. End point : Colourless to pink	Difference				

Reaction:

oxalic acid

sodium salt of oxalic acid

Calculations :

Observations II :

Weight of aspirin tablet (W) = ------ g

Observations III :	Obseravation table :				
1. In Burette : X N NaOH Solution	Burette	Burette reading in ml		C.B.R	
2. By pipette : 25 cc diluted aspirin tablet	Level	Ι	II	III	
solution	Final Level				
3. Indicator : Phenolphthalein	Initial Level				b=ml
4. End point : : Colourless to pink	Difference				
				•	

Reaction :

Aspirin

Sodium salt of Aspirin

Calculations :

1. Amount of aspirin in given tablet

From chemical reaction we know			
1 mole of NaOH solution	$\equiv 1$ mole of aspirin $\equiv 180$ g of aspirin		
i.e.1000 ml of 1 N NaOH solution	$\equiv 180 \text{ g of aspirin}$		
\therefore b ml of X N NaOH solution	\equiv <u>b x X x180</u> g of aspirin		
	1,000 x 1		
	- Cominin		
1.e Y	= g of aspirin		
Now 25 ml of diluted aspirin tablet solution contain = Y	= g of aspirin		
\therefore 100 ml of aspirin tablet solution contain = Y x 4 =	g of aspirin		
i.e. Z =	g of aspirin		
2. Percentage of aspirin in given tablet :			
Weight of aspirin tablet $= W = \dots$	g		
\therefore W g of aspirin tablet = Z g aspirin			
\therefore 100g of aspirin tablet = 100 x Z % a	aspirin		
	W		
i.e. A = %	aspirin		
i.e. Percentage of aspirin in given tablet =	=% aspirin		

Results:

1. Exact normality of NaOH solution	= X N	= N
2. Amount of aspirin in the given tablet	$= Z g$ $= Z x 10^{-3} kg$	= g = x 10 ⁻³ kg
3. Percentage of aspirin in given tablet	= A %	= %

16. Preparation of Benzoic acid

:

Aim : To prepare benzoic acid from benzamide.

Chemicals : Benzamide, 10 % NaOH, conc. HCl etc.

Apparatus : Conical flask, funnel , beakers etc.

Procedure

- 1. Take X gm (3 / 4 / 5 gm) of benzamide and 50 ml of 10% NaOH solution in a conical flask
- 2. Add about 20 ml distilled water and 2 to 3 porcelain pieces to it.
- 3. Cover the conical flask with stem cut funnel and heat the flask on sand bath for 30 minutes. During boiling ammonia gas is evolved. (Completion of reaction is tested by turmeric paper.)

- 4. Now cool the solution in ice cold water and add conc. HCl until the mixture becomes strong acidic. Benzoic acid separates immediately.
- 5. Filter the product using Buckner funnel and wash with cold water.
- 6. Dry and weigh the product. Suppose the weight of the crude product is Z g
- 7. Recrystallize the product from hot water.

Recrystallization: Take about 2 g of product in clean and dry test tube. Add $\frac{3}{4}$ th test tube distilled water to it and 2 porcelain pieces. Then boil the solution carefully. Filter this solution through cotton plug in another test tube. Cool the filtrate in ice bath to get crystals of benzoic acid. Again filter this solution through filter paper and dry the recrystallized product.

Observations :

- 1. Weight of benzamide (X) =g
- 2. 10 % NaOH = ml

Reactions

:

Result:

1. Weight of the crude product	=	Zg	=g
	=	Z x 10 ⁻³ kg	= x 10 ⁻³ kg

17. Identification of Organic Compounds (Organic Spotting)

- I. Determination of physical constant
- II. Preliminary tests
- III. Detection of elements
- IV. Determination of group
- V. Identification of organic compound by comparing physical constant and taking confirmatory test.

VI. Summary

Organic Compound No. ------

I) Physical Constant:

M.P. / B.P. of given organic compound = ----- ^{0}C

II) Preliminary Tests:

Sr.	Test	Observation	Inference
No.			
		Solid	Benzoic acid, Oxalic acid, Cinnamic
1.	State		acid, Glucose, Resorcinol, β-Naphthol,
			p-Toludine, m-Dinitrobenzene, Thiourea
			etc. may be present
		Liquid	Acetone, Aniline, Chloroform,
			Chlorobenzene may be present
		a) White solid	Benzoic acid, Oxalic acid, Cinnamic
2.	Colour		acid, Glucose, Thiourea etc. may be
			present.
		b) Colourless liquid	Acetone, Chloroform, Chlorobenzene
			Ethyl acetate may be present
		c) Brown or pink liquid	Aniline may be present
		d) Brown or pink solid	Resorcinol or β -Naphthol may be present
		e) Yellow or orange solid	m- Dinitrobenzene and p-Toludine may
			be present
		a) Fruty smell	Ethyl acetate may be present
3.	Odour	b) Pleasant	Acetone may be present
		c) Sweet smell	Chloroform, Chlorobenzene etc
		d) Phenolic	Resorcinol, β -Naphthol may be present
		e) Fishy smell	Aniline may be present
		f) No particular odour	Benzoic acid, Cinnamic acid, Salicylic
			acid, Glucose, Thiourea, m-
			Dinitrobenzene etc. may be present
	Solubility Test :	a) Salupla in cald water	
4.	i) Solid compound	a) Soluble in cold water b) Soluble in hot water	Resorcinol, Oxalic acid may be present
	+ water	b) Soluble III not water	Benzoic acid, Cinnamic acid may be
		a) Inachable	present
		c) Insoluble	β- Naphthol, p-Toludine, m-
			Sinitrobenzene may be present
	ii) Liquid	a) Miscible with water	Acetone may be present
	compound + water	b) Immiscible with water	Aniline, Chloroform, Chlorobenzene etc
		c) Immiscible and lighter	Ethyl acetate may be present
_		then water	
5.	Organic	Effervescence of CO ₂	Benzoic acid, Salicylic acid, Cinnamic
	compound +		acid may be present
	NaHCO ₃ solution	<u> </u>	
6.	Organic	Soluble	Resorcinol or β - Naphthol may be
	compound +		present
	NaOH, Shake well		

-				
7.	Organic compound	a) Decolourization of	Unsaturated compound is present	
	+ dilute KMnO ₄	KMnO ₄ solution		
		b) No decolourization of	Saturated compound is present	
		KMnO ₄ solution		
8.	Organic compound +	Soluble	p-Toludine, Aniline may be present	
	dil. HCl			
9.	Burning Test	a) Burns with sooty flame	Aromatic compound is present	
	Heat small amount of	b) Burns with non-sooty	Aliphatic compound is present	
	substance on piece of	flame		
	glass rod or Cu foil c) Green flame for liquid		Halogen containing compound is	
		compound	present	
		d) Green flame for solid	Thiourea is present	
		compound	-	
		±		

III) Detection of elements (Lassiagne's test or sodium fusion test):

Take 3/4 test tube distilled water in clean evaporating dish. Take a dry piece of freshly cut sodium (Na) metal in a three fusion tubes. Heat the fusion tube gently to melt the Na metal. Add little amount of organic compound to it. (For liquid compound use 5 ml pipette for dropping the liquid in fusion tube) Initially heat slowly and then strongly until fusion tube is red hot. Drop red hot fusion tube in evaporating dish containing distilled water. Repeat the procedure for remaining fusion tube.

Boil contents of evaporating dish for some time (till half of the distilled water in evaporating dish evaporates) and filter through ordinary filter paper in a large test tube. This filtrate is known as sodium extract. Use this filtrate / extract for detection of elements.

Sr. No.	Test	Observation	Inference
1.	Test for nitrogen :		
	1 ml filtrate + 1 ml freshly prepared	Blue ppt or	Nitrogen (N) is present
	saturated FeSO ₄ solution + 1 drop of NaOH	green	
	boil well, cool well & add excess of conc. HCl	coloration	
	Na + C + N		
	2 NaCN ┿ FeSO₄>	Fe(CN) ₂ + Na ₂	SO ₄
	Fe(CN) 2 🕂 4 NaCN	 Na₄[Fe(CN)₆] 	
	$3 \operatorname{Na}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}] + 4 \operatorname{FeCl}_{3} + \operatorname{HCl}_{3}$	Fe ₄ [Fe(CN) ₆] ₃	4 + 12 NaCl
	T T T S	Ferric ferrocyanide (p	russian blue)
2.	Test for sulphur		
	2 ml filtrate +1 drop of NaOH + few	Purple or violet	Sulphur (S) is present
	drops of sodium nitropruside solution	colouration	
	2 Na 🕂 S —	→ Na ₂ S	ida
	$Na_2S + Na_2[Fe(CN)_5 NO] =$	→ Na (Fe(CN	
	Sodium nitroprusside	purple colo	bur
3	Test for helogons :		
5.	$2-3$ ml filtrate $\pm 1-2$ ml dil HNO ₃ boil cool	White or	Halogen (X) present
	+ AgNO ₃ solution	yellow ppt	gen (ir) present

∴ Given organic compound contains element C, H, and (O) and

IV) Determination of group:

Group I – Compounds containing element C, H and (O):

Sr. No.	Test	Observation	Inference			
	A) Acid (-COOH)					
1.	Organic compound + Saturated NaHCO ₃ solution	Effervescence of CO ₂	Benzoic acid Oxalic acid Cinnamic acid May be present			
	R COOH 🕂 NahC	$O_3 \longrightarrow R COONa + C$	$\mathbf{x}_{0_{2}}$			
2.	Organic compound + water	Completely soluble & acidic to litmus	Oxalic acid is present			
Prepa	ration of neutral solution:					
1 g org (Test y	ganic compound + 10 ml NH ₄ OH s with turmeric paper it should not tu	olution in a beaker \longrightarrow beam brown) \longrightarrow Neutral solution	oil off ammonia gas n			
,	1 1	,				
3.	Neutral solution + FeCl ₃	Buff coloured or reddish	Benzoic acid or			
	solution	Brown ppt	Cinnamic acid is			
4	Neutral solution + CaCh	a) White presinitate insoluble	present			
4.	solution	in acetic acid	present			
	solution	b) No white precipitate	Benzoic acid is present			
	B) Phenols (Ar-OH)		1			
1.	Organic compound + water, shake well, compound dissolves + FeCl ₃ solution by pipette	Violet coloration	Resorcinol is present			
2.	Organic compound + water, shake well, compound remains insoluble + boil + FeCl ₃ solution	Green coloration immediately changing to white.	β -Naphthol is present			
	6 Ar OH + FeCl ₃ \longrightarrow [(ArO) ₆ Fe] ³⁻ + 3 HCl + 3 H ⁺ complex ion (violet colour)					
	C) Neutral					
1.	Ester: Liquid organic compound + NaOH + FeCl ₃	Red colour	Ethyl acetate is present			

2.	Carbohydrate:		
	Organic compound + Fehling's	Red ppt.	Glucose is present
	solution and warm		
3.	Ketones :		
	Organic compound + few drops	Blood red coloration	Acetone is present
	of sodium nitroprusside solution		
	+ 2 drops of NaOH		

Group II: Compounds containing the elements C, H, (O) and N:

Sr.	Test	Observation	Inference		
NO.					
1.	Amines (-NH ₂): Use two test tubes for this test. In first test tube : Organic compound + 3	Orange dye stuff	Aniline, p-Toludine is		
	times conc. HCl, cool and dilute with water + few drops of NaNO ₂ (sodium nitrite) solution, cool well in ice cold water.		present		
	<u>In second test tube</u> : β – Naphthol +				
	NaOH, shake well, cool well in ice cold water. Add solution of first test tube into second test tube.				
	Colour of organic compound	a) Yellowish brown coloured liquid. b) Brownish solid	Aniline is present		
	Ar NH ₂ + NaNO ₂ + HCl $\xrightarrow{\text{diazotization}}_{\text{low temparature}}$ Ar N=N.Cl + NaCl + 2H ₂ O diazonium salt N=N Ar Ar N=N.Cl + $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + HCl $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + HCl $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O $\xrightarrow{\text{Hore}}_{\text{diazonium salt}}$ Ar N=N.Cl + NaCl + 2H ₂ O				
2.	Nitrohydrocarbon: Compound + 2 ml alcohol + 2 drops CaCl ₂ solution + small quantity of Zn dust, boil for few minutes and filter into Tollen's reagent.	Grey or black ppt	m- Dinitrobenzene present		
(To	(Tollen's reagent: 2 ml AgNO ₃ solution + drop of NaOH + add NH ₄ OH till ppt. dissolves.)				

Group III: Compounds containing the elements C, H, (O), N and S:

1.	Heat organic compound in test tube till it	Red coloration	Thiourea present
	$melts + cool + water + aqueous \ FeCl_3$		

Group IV: Compounds containing C, H, (O) and Halogen:

ſ	1.	1 ml sodium extract $+$ CHCl ₃ $+$ Cl ₂ water in	Colourless	Chlorobenzene,
		excess shake well	chloroform layer	Chloroform present
V) Identification of the organic compound by comparing their practical / observed M.P. / B.P. with the theoretical M.P. / B.P.

Sr. No.	Name of organic compound	Molecular formula	Structural formula	Function al group	M.P. / B.P.	Confirmatory test		
Group I: Compound containing elements C, H, (O).								
A	A) Acids							
1.	Benzoic acid	C ₇ H ₆ O ₂	COURT	-COOH	M.P. 122ºC	Organic compound $+2$ ml ethyl alcohol $+4$ to 5 drops of conc. H ₂ SO ₄ $+2$ porcelain pieces and heat :- Sweet smell of ester.		
2.	Oxalic acid	$C_2H_2O_4$	СООН СООН	-COOH	M.P. 101 ⁰ C	Organic compound + $CaCl_2 Sol^n$:- White ppt.		
3.	Cinnamic acid	C ₉ H ₈ O ₂	CH=CH.COOH	>C=C< -COOH	M.P. 133ºC	Organic compound + drop of dil. H ₂ SO ₄ + 1ml dil. KMnO ₄ solution & warm :- decolourization of KMnO ₄		
B) Phenols							
4.	Resorcinol	C ₆ H ₄ (OH) ₂	ОН	Ar-OH	M.P. 110 ⁰ C	Organic compound + NaOH shake well + few drops chloroform and boil :- Brilliant red colour.		
5.	β – Napthol	C ₁₀ H ₇ OH	ОН	Ar-OH	M.P. 122ºC	Organic compound + chloroform (CHCl ₃) + copper fillings + NaOH solution and heat : - blue colouration.		
(C) Neutrals							
6.	a. Ester : Ethyl acetate	C4H8O2	0 Н ₃ С-С-О-С ₂ Н	0 ^{II} ₅R−C−O−R'	B.P. 78 ⁰ C	Liquid organic compd . + water + 2 drops of phenolphalein + very dilute NaOH, drop by drop till pink colour is developed & warm :- pink colour disappears .		
7.	b. Ketone: Acetone	C ₃ H ₆ O	о ^{II} H ₃ C-С-СН ₃	0 R-C-R'	B.P. 56 ⁰ C	Organic compound + m-Dinitrobenzene + excess of NaOH solution, shake well :- Violet coloration which fades slowly.		
Gro	up II: Comp	ounds contai	ning elements C,	H , (O) and	N.			
	A) Amines							
8.	Aniline	C ₆ H ₅ NH ₂	NH ₂	Ar-NH ₂	B.P. 184 ⁰ C	Organic compd. +KOH + CHCl ₃ + few pieces of porcelain + heat :- dirty smell of carbylamines.		

9.	p- Toludine	CH ₃ (C ₆ H ₄) NH ₂	NH ₂ CH ₃	Ar-NH ₂	M.P. 44 ⁰ C	Compound + Water + concentrated HCl + shake well + few drops of FeCl ₃ :- Red orange colour
B	8) Nitrohydro	ocarbon:				
10	m-Dinitro benzene	C ₆ H ₄ (NO ₂)	NO ₂ NO ₂	-NO ₂	M.P. 90 ⁰ C	Organic compound + 1-2 ml acetone + few drops of NaOH :- Deep violet coloration
Gro	up III : Com	pounds conta	aining elements (C,H,(O), N a	and S:	
11.	Thiourea	C H ₄ N ₂ S	S=CNH ₂ NH ₂ NH ₂ NH ₂	>C=S	M.P. 180 ⁰ C	Compound + acetic acid warm + aqueous[K ₄ Fe (CN) ₆] \rightarrow Green colour changes to blue on standing .
Gro	up IV : Com	pound contai	ining C,H,(O) and	d X :		
12.	Chlorofor m	CHCl ₃	CI H–C–CI CI	-Cl	B.P. 61 ⁰ C	Compound + β -Naphthol in NaOH + Copper filling \rightarrow Heat \rightarrow Blue colour changes to brown on standing.
13.	Chloroben zene	C ₆ H ₅ Cl	CI	-Cl	B.P. 132 ⁰ C	It is colourless liquid and aromatic in nature

Confirmatory test of

Test	Observation	Inference

VI)	Summary:
· -/	

- 1.Appearance
- Solid / Liquid.
- 2. Nature
- 3. Elements
- Aliphatic / Aromatic
- C, H, (O) and :
- 4. Functional group :
- a) Theoretical M.P. / B .P. = ^{0}C 5. Physical constant :

:

:

b) Practical M.P. / B .P. = \dots ⁰C

On the basis of confirmatory test and summary, the given organic compound is

Result:

Name of organic compound	Molecular formula	Structural formula

Theory Examination Pattern (CBCS)

Semester I	Semester II	
University Examination	University Examination	
Chemistry Paper No. I $= 40$ marks	Chemistry Paper No. III = 40 marks	
Chemistry Paper No. II $= 40$ marks	Chemistry Paper No. IV = 40 marks	

Internal examination (Unit Test / Home Assignment) for <u>each Paper</u> = 10 marks

Annual Practical Examination Pattern (CBCS)

Total Marks = 100

- Internal practical examination (As per schedule given by college) = 20 marks
- University practical examination (Annual as per schedule given by university) = 80 marks

University practical examination paper is of 80 marks. Duration of this examination is one day. There will be two practicals. Distribution of 80 marks university practical examination is as follows:

Section	Marks
Two experiments from Physical / Inorganic / Organic / Analytical sections	70
Oral	05
Journal	05
Total	80

Journal Writing Format:

	Date:
	Title of Experiment
Reactions:	Aim:
Figures:	Chemicals:
Observations:	Apparatus:
Observation Table:	Procedure:
Calculations:	Results:

Dr. Parthraj R. Kshirsagar

March Department of Boteny Shri Shiveji Mshavidyeleya Barshi, Dist-Solapur

		Deskalar of Sol	ence (Hons)-l		
-		B Software/Degular - CBCS Patte	ern 2019 - B.Sc(Hons)-I Sem-II		
Danar	Cada - 1000	B.Sc(Hons)Regular - CBC3 Fatte	Practical	CA (Min Mark: 0 M	lax Mark: 20
SrNa	Sant No	Name	PRN No	Marks	Total
1	002157		202101082003635		17
2	002157	ACAL AVE PHISHIKESH HEMANT	202101082005738		18
1	002130	ANDUARE BATILIA BAVINDRA	202101082003895		19
4	002164	Albara Sanita Sanjaykumar	202101082004020		17
5	002164		202101082003681		15
6	002160		202101082003887		19_
7	002109		202101082004072		15
8	002170	PARATE MADHURI RAMESHWAR	202101082005739		16
0	002172	BARONE PRANALIDATTATRAYA	202101082003657		20
10	002173	BARBOLE POHINI SANJAY	202101082003679		20
11	002174	BHATLAVANDE LIRMILA TANA II	202101082003816	12	19
12	002170	PHOLE PRAGATLASHOK	202101082004775		14
11	002180	BHOLE VAISHNAVI RAJKUMAR	202101082004920		12
14	002101	BHOSALE VAISHNAVI RAJENDRA	202101082005393		13
15	002184	hhosale vaishanavi vishwanath	202101082004016		15
16	002185	BHOSALE VAISHNAVI DILIPKUMAR	202101082003643		17
17	002186	BHUITE SAKSHI RAMCHANDRA	202101082005384		18
18	002188	CHAUDHARI SHANKAR ASHOK	202101082003650		10
10	002189	CHAVAN SAUDAGAR UTTAM	202101082003660		20
20	002190	CHAVAN SHIVANAND DHARMARAJ	202101082004032		03
21	002192	CHAVAN VAISHNAVI ABHIMAN	202101082013193		11
23	002193	Chobe Pooia Hanumant	202101082003883		11
23	002197	DESHMUKH GEETANJALI SUBRAO	202101082004719		18
24	002199	DEVKATE SAKSHI HANUMANT	202101082003820		10
5	002201	DHERE SANKET RAMHARI	202101082005375		18
263	002202	DOIFODE SHWETA SAMBHAJI	202101082003673		14
7	002204	FAPAL PRIYANKA PANDURANG	202101082003675		18
28	002206	GADKAR SARIKA SHANKAR	202101082003678		20
9	002208	GAIKWAD AJAY BALASAHEB	202101082004768		13
10	002209	GAIKWAD ANKITA ANNASAHEB	202101082004868		17
1	002210	GAIKWAD GAURI PRASHANT	202101082005339		10
17	002211	GAIKWAD SANIKA NITIN	202101082004770		19
1	002212	GALANDE ANUSHKA SURYAKANT	202101082004922		IF
4	002213	GALANDE ANKITA KAMALAKAR	202101082004924		10
5	002214	GAVALI PRATHAMESH RAJENDRA	202101082004083	1	07
6	002215	GAVASANE VAISHNAVI RAMESH	202101082003758		15
7	002216	GAVHANE PRANITA NEMINATH	202101082003722		17
n	002218	GAWARE RUTIKA BHARAT	202101082005740		11/
0	002210	Ghavlidak Vijav Maruti	202101082004025		19
0	002220	GHAYTIDAK VRUSHALI APPASAHEB	202101082003720		119
1	002224		202101082003763	The second second	12
,	002225	GHOLAVE VAISHNAVI WALCHAND	202101082004030		117
1	002220	GHYTIDAK SHWETA NARSINH	202101082003762		
	002210	GURAV GORAKH JAGANNATH	202101082003215		10
	002211	HANDE SAKSHI SANTOSH	202101082003215		170
,	002233		202101082003608		10
7	002234	IADHAV ATHARY BANDU	202101082003697		14
	002235		202101082004893	and the second second	12
	002236		202101082003658		11

Punyashlok Ahilyadevi Holkar Solapur University, Solapur Dnyanteerth Nagar, Kegson, Solapur - Pune National Highway, Solapur- 413255, Maharashtra (India)

Blank Mark List For

Printed on: 17/08/2022

CS CamScanner

		College Name: Shri Shival	Mahavidvalava Barehi/Chart	and the state of the
		Conege Name: Shi Shivaj	i manavidyalaya, Barshi(SMB)	
		Bachelor of	Science (Hons)-I	
Panar	Cada : 1030	B.Sc(Hons)Regular - CBCS P	attern 2019 - B.Sc(Hons)-I Sem-II	
St No.	Code : 1920	Name	Practical	CA (Min Mark: 0 Max Mark:
so	0022230	JADHAV DOUIT DDACHANT	PRN No	Marks Total
51	002242	JACHAV KOHIT PRASHANI	202101082003826	12
	002343	LACTAD MIDABALVA INATU	202101082003718	9
1	002345	LAGTAP SHELTI SATISH	202101082003886	11
54	002248	LIAGTAP VI JAYA SAHADEV	202101082003829	18
55	002248	JAVNE RI DAKSHA VISHAI	202101082003708	
56	002251	KADAM SAMARTH BHAUSAHER	202101082004028	
\$7	002252	KADAM TANAYA ARJUN	202101082003693	
18	002253	KALE RUTUJA SHASHIKANT	202101082004885	
19	002259	KAPASE ISHWARI GANESH	202101082003772	
10	002260	KAPSE SAKSHI RAKESH	202101082003828	
st	002262	KARKAR OMRAJE SANTOSH	202101082003659	
12	002263	KASABE SAGAR RAJENDRA	202101082004778	12
13	002267	KATMORE VAISHNAVI BAPU	202101082004891	
54	002270	KAZI FIZA MUDASSSIR	202101082003818	
55	002271	KHADBADE NIKITA SHANKAR	202101082003667	10
15	002272	KHAIRE AISHWARYA BHAUSAHEB	202101082005386	10
\$7	002275	KHANDAGALE ABHISHEK BALASAHEB	202101082004879	0
58	002276	KHARADE RADHA SHIVHARI	202101082004718	8
59	002279	KHODSE BALIKA BAPURAO	202101082005251	14
10	002280	KHUNE PRITI KIRAN	202101082005742	12
71	002281	KOLEKAR SHRADDHA SHASHIKANT	202101082003709	18
12	002283	KOLTE KESHAV ANIL	202101082005381	16
73	002284	KONDHARE SWAPNALI SHANTILAL	202101082005247	12
74	002285	KONDHARE ASHWINI BALASAHEB	202101082003646	15
15	002287	KOTWAL ALFIYA PASHA	202101082005243	14
6	002288	KSHIRSAGAR AMOL DATTATRAYA	202101082003956	10
7	002289	KULKARNI SOURABH SURESH	202101082003831	14
3	002292	LAD TEJA VIVEK	, 202101082005302	16
9	002293	LANDAGE FATEMABI AYYUB	202101082003759	15
0	002294	Landage Rohan Chaitanya	202101082003960	12
1	002296	LANDAGE SNEHA BALASAHEB	202101082003760	16
	002298	LONARE KIRTI SURESH	202101082003690	18
4	002299		202101082003682	19
5	002304	MALLON SACHIN	202101082003648	18
6	002305	MALLUAISHNAVI VI JAYKUMAR	202101082003661	13
7	002306	MANE AISHWARYA SUBHASH	202101082005745	20
8	002307	MANE ANJALI KASHINATH	202101082003684	8
9	002308	MANE JANVHI RAHUL	202101082005055	
0	002309	MANJARE RUTUJA KRUPACHRYA	202101082003994	18
1	002310	MANJARE SHWETA RAVINDRA	202101082005073	
2	002314	MATE DATTATRYA ARJUN	202101082005017	
3	002315	MISAL SANSKRUTI CHANDRAKANT	202101082005744	
	002317	MOHITE PRIYANKA SANTOSH	202101082003665	DE
5	002318	MOKHANDE GANESH RAMKRUSHNA	202101082004774	- 12
5	002319	MOMALE SHRADDHA KAKASAHEB	202101082003866	10
,	002321	MORE ANKITA RAMKRUSHNA	202101082004882	10
1	002323	MUJAWAR SAHIL HASAN	202101082003821	09
)	002325	MULANI ANJUM SHARIF	202101082003664	18
0	002327	MULUK PRATIKSHA VILAS	202101082005336	10
11	002329	NAGAME RUPESH BABASAHEB	202101082004041	a
2	002330	NAGMODE DNYANESHWARI VIKAS	202101082003832	112
3	002331	NAGTILAK ASHWINI VIJAY	202101082004007	12

Report Generated By Mahadik S.D. on 17/08/2022 01 39 02pm

Dor Pasting Kshirtzyn r

PUSSES E Head Department of Botany Shri Shivaji Mahavidyalava Barshi Diet-Sulanu

		Fitans Mark L	ial Fed	antion internation states	ren Forais de Leoren
		t ullege Name Eftet still by Bas	anistratula generatistry	and a state of the	at the state of the state
		Dashahar of hotar	n e (fenne) e	ter gerkal denor i result	
-	table tables	28 Sugfforte Breatler . t fit is Fatter	n fitte i fe fte gibteren f f fanne ft	and the second second second	-
ALC: NO.	I man has	ter tertaria Praste at	Freißs al	TA 1600 Mark 8 H	fen Murk - B
ha	Course and	AND ADDRESS CARDINALS AND ADDRESS	1.1671 140	Alwis 2	F.d.d
14	Intitute	THE ADDRESS OF THE AD	2122 \$12 \$12 \$08 2100 30 bit	AND IN CONTRACTOR	18
	toni tes	CALLER MATTER HAPPENEAG	20.110108308717	encine and and and	man and a se
A.5	Calibras	THE REPORT OF TH	202101042004338		115
-	Laborer		707101082001778		117
14		TALLAN ALLAN A LINK ALLAN AL	202101082005189	plot and participation of the	112
in the second second	and and	CALLER STREET, SALAR	202101082001730	mentación de concession	18
11			202101082004889		10
	Candida a		202101082005748	new colored and real colors	113
	CANTER S		202101082003649		14
	Lange to a	THE TRUTTAL INTERIOR	202101082004714	Concerning in case in case	-11
		THE TOPOLO PROPERTY	202101082004878		111
	Colorada	AND AN SPATA DATTATAVA	202101042003766		14
	COLO NOR	AVAN PRAGATI SANTOSH	202101062003884	And an owner where the second second	14
	1007357	PANAR RANVET RAA 54	202101082003663		117
1.8	100.2 Mild	PANADE SPRADCESA SANTOSH	202101042003812	Descourses and the second	13
1.8	00.238.2	PTEAL SECTION T SECTION BRINAR	202101082015098		19
20	1.86 (100)	RAUT UTKARSHI (A.HAS	202101082001748		12-
23	052365	PRALIT NEPRA ISANGRAY	202101082003819		16
22	00.7.868	RAUT SANJYOTESPERANT	202101082004074		20
23	002388	SALUNDE SWAPHALI NANAVAN	202101082003921		17
38	002369	SAPKAL DROVUAY KAKASAHEB	202101082003899		18
25	002370	Sarwade Samarth Separ	202101082003863		17
26	002371	SATFUTE GAMESH RAVSAMED	202101082004036	and the second s	12
27	002373	SHAIKH SANIYA NAYUM	202101062003750		13
28	00.2374	SPAADON SALAMA AMAJAD	262101082005245		24
29	00.2375	SHARH AMAN HUSSAIN	202101082003647		15
80	002378	SHARH BUSHRA MANSOOR	202101082003743		117
31	002378	SPELAKE AISHMARYA BHASKAR	202101082003710		20
52	002379	SHELAKE DIPALI SATISH	202101082005070		13
5.5	002380	SHELAKE DIPALI SHANKAR	202101082004067		10
34	002385	SHINDE SALONI RAMESH	202101082005248		16
55	002384	SHINCE ASMITA AMAR	202101082003677		16
м	002386	SHINCE SANCIP VALINATH	202101082003676		16
37	002367	SPRINCE SPINETA SANJAY	202101082005392		14
38	002368	SHINCE VAISHNAM AFFASAHEB	202101082004086		1 10
29	002395	TAMBOLI SOHEL MOHAMMAD	202101082003768		1 00
40	002396	TELANCE KIRTLANKUSH	202101082003691		13
	002397	THAKARE MAYURI GANESH	202101082003218		10
.2	007399	THORGE ANUJA ASHRAB	202101082003892		1 3
13	002400	THORE SHAKSHI AVIRATH	202101082003984		10
	002401	TIKATE VAISPINAVI RAMKRUSPINA	202101082005015		1.0
4.5	003403	TORACMAL SHARTA DASHARATH	202101042005400		
	Intra Sect.	VALE VERA SHEERAM	202101082003875		14
4 P	100.5 404	MACHI PRAJANTA SANJAY	202101043004396		
	002408	SALE ALLON AND CARACTERIST	003101001005104		111
1.5	00124-05		200101002003746		110
1.9	0812408	PRODUCT ADDRESS ADDRESS ADDRESS	20210108203322		13
561 561	1002411	PRACTICAL CONTRACTOR MOTION	2112 10 108 200 36 74		+ 17
11	002413	MACIONARIE PRATIRIERA BARGERRAD	202101082003723		03
52	082414	WAGHMARE ROLET PANER/RANG	202101082013100		117
1.3	1002417	YADAY ANURAG RAJENERA	202101082003651		117
14	002418	VACAV KERANJAN NANEWLIMAR	292101082003654		16
1.6	002419	YADAY PRITI LAME SH	202101082003716		117
-	And I would be a set of the set o				

Dr. Pastfriaj R. Kshiasayar

0 Head

101

Department of Boleny Shit Shiviş Kishavidyelaya Bershi, Dist-Solaput

Punyashkok Ahilyadevi Holkar Solapur University, Solapur Doyanteerth Nagar, Kegaon, Solapur - Pone National Highway, Solapur- 413255, Maharashtra (India)

		College Name Sha Shire H	havbladaya BarshirSMB)		
		College Name Shit Shiraji Ma	navnyalaya, narangamet		
		Bachelor of Scie	ace (Hons)-1		
		B Sections)Regular - CBCS Palle	in 2019 - B. Scittons) I Sem I	LA Alle Mark: 0 Ma	Mark
1946 Q	onla 18201	134 Bolany Practical	Practical	Lin (Min Mark: V Ma	Tratal
Net	Sent No.	Nana	PRN No	- C / P	
	002157	ADOLA AD BRAV SPERIRAM	202101082003635		
	002158	AGALANE REUSEBKESPEREMANT	202101082005738	13	
	002181	AND HARE RATILLA RAVINORA	202101082003895	10	
	000164	Aikara Sanka Sanjaykumar	202101082004020	70	
	002155	ATKARE TE JASALKRISHNAT	202101082003681	12	
	000169	BAGMAN MASIRA ARIF	202101082003587	72	-
	002170	BATERE WAR ALSOMARY TUKARAM	202101082004072	46	
	442172	BARATE MALVIERI RAMESHMAR	202101082005739	13	
	000173	BARBOLE PRANALI DATTATRAVA	202101082003657		
2	002114	BARBOLE ROMINI SANJAY	202101052003679	78	
1	002178	OF INTERVANCE LIRING & TANAJI	202101082003816	76	
2	002130	BENTE PRAGATIASTICA	202101082004775	71	
4	002181	BEAN E VAISENAVERA INUMAR	202101082004920	66	-
4	002133	OF IN STALE VALSHINANI HAJE NORA	202101082005393	6.9	-
8	0.02184	bhosale vashanavi vishivanath	202101082004016	73	
à .	002185	BERNSALE VARIERINAVE DELIFICUMAR	202101082003643	64	
7	002100	WHILE SANSHERANCHANDRA	202101082005384	74	-
	661500	CHALENIARI SHANKAR ASHOK	202101082003650	69	
	0.02139	CHAVAN SAUDAGAR UTTAM	202101082003660	68	-
	002100	CHAVAN SHIVANAND DHARMARAJ	202101082004032	115	1 K
2.8	002192	CHAVAN VAISHINAVI ABHIMIAN	202101082013193	-67	-
12	INCOM .	Chobe Pooja Hanomant	202101082003883	63	
14	1415.00	DE SHARDAT DE ETANJALI SUBRAO	202101082004719	65	
24	002199	DEVKATE SAKSHI HANUMANT	202101082003820	4	-
à	002201	LY & RE SANKE I RAMMARI	202101082005375	72	-
	0.02202	INSPODE SPINETA SAMBHAR	202101082003673	71	-
23	002204	FAPAL PRIVANKA PANOLIRANG	202101082003675	71	
	002200	GADKAR SARIKA SHANKAR	202101082003678	74	
	002208	GAIKWAD AJAY BALASAHEB	202101082004768	67	-
1.1	002200	GAIKWAO ANKITA ANNASAHEB	202101082004868	65	-
38	002210	GAINWAD GAURI PRASHANT	202101082005339	68	-
12	1155.00	GAIKWAD SANIKA NITIN	202101082004770	69	
1.1	002232	GALANDE ANUSHKA SURVAKANT	202101082004922	66	-
14	002213	GALANDE ANKITA KAMALAKAR	202101082004924	59	-
15	415530	CAVALI PRATHAME SH RAJE NORA	202101082004083	31	
10	6155.90	GAVASANE VAISHINAVI RAMESH	202101082003758	10	-
32	002216	GAVHANE PRANITA NE MINATH	202101082003722	72	-
1.8	002218	GANARE RUTIKA BHARAT	202101082005740	- 58	
113	002218	Citraytotak Vijay March	202101082004025	67	-
40	002220	GHAYTIDAK VIRUSHALLAPPASAHEB	202101082003720	67	-
41	1002234	GREAP VERY SHVAR	202101082003763	40	-
4.2	0022226	UPIDEAVE VAISHNAVE WALCHAND	202101082004030	67	-
4.5	002326	LIPOTTEMAK SPIME TA NARSINH	202101082003762	72	
	002230	GURAY CORACH JAGANNATH	202101082003215	66	
	002233	HANER SAKERS SANTOEH	202101082003868	67	_
44	INC2234	LIADHAV ADITI ADHAY	202101082003697	69	-
4.3	10022344	DALINDAV ATTRAFCE BANERS	202101082004893	67	1
1.0	CAN'S MA	LIACHIAN DE VANANI VINGANAN	202101082003858	79	-
		INCREASE CONTAINS STORAGE CHARLERAKANT	202101082003686	72	

Report Generated By Mahada S.D. on 17/08/2022 01 39 02pm

Dr. Pasthraj R. Kskissyar

ead

Department of Bowny Shiri Shtvaji Mahavidyalaye Bershi, Dist Solapur

Chainstand and

	and the second second	College Name: Shri Shivaji Ma	havidyalaya, Barshi(SMB)	and the second
		Bachelor of Scie	ance (Hons)-I	
		B.Sc(Hons)Regular - CBCS Patte	rn 2019 - B.Sc(Hons)-I Sem-II	
Paper	Code : 19201	204-Botany Practical	Practical	UA (Min Mark: 0 Max Mark
Sr.No	Seat No	Name	PRN No	Marks Total
50	002239	JADHAV ROHIT PRASHANT	202101082003826	70
51	002242	JADHAV VAISHNAVI NANDKUMAR	202101082003718	70
52	002243	JAGTAP MIRABAI VAJINATH	202101082003886	72
53	002245	JAGTAP SHRUTI SATISH	202101082003829	68
54	002246	JAGTAP VIJAYA SAHADEV	· 202101082003708 ·	71
55	002248	JAVHERI DAKSHA VISHAL	202101082004028	67
56	002251	KADAM SAMARTH BHAUSAHEB	202101082003693	78
57	002252	KADAM TANAYA ARJUN	202101082004885	77
58	002253	KALE RUTUJA SHASHIKANT	202101082003772	76
59	002259	KAPASE ISHWARI GANESH	202101082003828	77
60	002260	KAPSE SAKSHI RAKESH	202101082003659	69
61	002262	KARKAR OMRAJE SANTOSH	202101082004778	59
62	002263	KASABE SAGAR RAJENDRA	202101082003209	63
63	002267	KATMORE VAISHNAVI BAPU	202101082004891	65
64	002270	KAZI FIZA MUDASSSIR	202101082003818	69
65	002271	KHADBADE NIKITA SHANKAR	202101082003667	75
66	002272	KHAIRE AISHWARYA BHAUSAHEB	202101082005386	69
67	002275	KHANDAGALE ABHISHEK BALASAHEB	202101082004879	69
68	002276	KHARADE RADHA SHIVHARI	202101082004718	70
69	002279	KHODSE BALIKA BAPURAO	202101082005251	63
70	002280	KHUNE PRITI KIRAN	202101082005742	70
71	002281	KOLEKAR SHRADDHA SHASHIKANT	202101082003709	78
72	002283	KOLTE KESHAV ANIL	202101082005381	74
73	002284	KONDHARE SWAPNALI SHANTILAL	202101082005247	71
74	002285	KONDHARE ASHWINI BALASAHEB	202101082003646	76
75	002287	KOTWAL ALFIYA PASHA	202101082005243	66
76	002288	KSHIRSAGAR AMOL DATTATRAYA	202101082003956	71
77	002289	KULKARNI SOURABH SURESH	202101082003831	67
78	002292	LAD TEJA VIVEK	202101082005302	72
79	002293	LANDAGE FATEMABI AYYUB	202101082003759	71
80	002294	Landage Rohan Chaitanya	202101082003960	60
81	002296	LANDAGE SNEHA BALASAHEB	202101082003760	69
82	002298	LOKARE KIRTI SURESH	202101082003690	73
83	002299	LOMATE RAJNANDINI RAJENDRA	202101082003682	75
B4	002301	MACHALE GAYATRI VITTHAL	202101082003648	75
85	002304	MALI OM SACHIN	202101082003661	61
86	002305	MALI VAISHNAVI VIJAYKUMAR	202101082005745	75
37	002306	MANE AISHWARYA SUBHASH	202101082003753	76
38	002307	MANE ANJALI KASHINATH	202101082003684	67
39	002308	MANE JANVHI RAHUL	202101082005065	75
0	002309	MANJARE RUTUJA KRUPACHRYA	202101082003994	72
91	002310	MANJARE SHWETA RAVINDRA	202101082005073	67
92	002314	MATE DATTATRYA ARJUN	202101082005017	49
93	002315	MISAL SANSKRUTI CHANDRAKANT	202101082005744	65
94	002317	MOHITE PRIYANKA SANTOSH	202101082003665	33
15	002318	MOKHANDE GANESH RAMKRUSHNA	202101082004774	67
6	002319	MOMALE SHRADDHA KAKASAHEB	202101082003866	69
7	002321	MORE ANKITA RAMKRUSHNA	202101082004882	72
8	002323	MUJAWAR SAHIL HASAN	202101082003821	.46
9	002325	MULANI ANJUM SHARIF	202101082003664	68
00	002327	MULUK PRATIKSHA VILAS	202101082005336	77
01	002329	NAGAME RUPESH BABASAHEB	202101082004041	59
02	002330	NAGMODE DNYANESHWARI VIKAS	202101082003832	64
03	002331	NAGTILAK ASHWINI VIJAY	202101082004007	70

Report Generated By: Mahadik S.D. on 17/08/2022 01:39 02pm

Shri Shivaji Mahavidyalaya, Barshi DEPARTMENT OF BOTANY

Date: 17/06/2022

To, The Principal, Shri Shivaji Mahavidyalaya, Barshi Dist: Solapur

Subject: Permission for Botanical excursion of B. Sc. I and II

Respected Madam,

いた、シストレーンに注意が発展に設置

With respect to above subject, Department of Botany is going to organize one day botanical excursion at Ramling hills, on 20/06/2022. As a part of syllabus of Punyashlok Ahilyadevi Holkar Solapur University, Solapur, botanical excursion report is compulsory in practical examination. Following faculty members will conduct this tour. Please sanction duty leave as well as TA and DA of these faculty members.

Sr. No.	Name of the Faculty	
1	Mr. Patil P. A.	
2	Mr. Bhise D. S.	
3	Dr. Gaikwad S. P.	
4.	Dr. Kshirsagar P. R.	
5.	Dr. Gawali M. T.	
6.	Ms Ganje P. B.	
TF.	Mr. Karanjakar S. N.	

So, I hereby request to grant the permission for this excursion.

137

Thanking You,

Allowed Preve 10/06/2022

ł

Yours Faithfully,

बनत्वविशास्त्र विषयम श्री विद्याली महत्वपं तथाव, बाधी, रक्ष, योक हुर

Scanned with CamScanner

Shri Shivaji Mahavidyalaya, Barshi Department of Botany Botanical Excursion Date 20/06/2022

Sr.	No.	Name	Class
	1.	Anbhule Ankita Atul	B. Sc. []
	2.	Andhare Sakshi Bhausaheb	B. Sc. II
	3.	Bagal Pratiksha Nagnath	B. Sc. II
	4.	Bagale Ritu Laxman	B. Sc. II
	5.	Barangule Aishwarya Vijay	B. Sc. II
	6.	Chaudhari Rohan Govind	B. Sc. II
	7.	Deshmukh Manoj Tukaram	B. Sc. II
	8.	Dhanake Durga Maruti	B. Sc. II
	9.	Doiphode Minal Maruti	B. Sc. II
	10.	Doke Vijay Abasaheb	B. Sc. II
	11.	Dupare Rohit Mahavir	B. Sc. II
-	12.	Gadade Pravin Bajrang	B. Sc. II
-	13.	Gaikwad Amruta Somnath	B. Sc. II
	14.	Gaikwad Dnyaneshwar Nanasaheb	B. Sc. II
-	15.	Gaikwad Gouri Dhanaji	B. Sc. II
	16.	Ghemad Ranjit Tulsidas	B. Sc. II
-	17.	Gholap Prajakta Subhash	B. Sc. 11
T	18.	Gudekar Gayatri Vijay	B. Sc. II
F	19.	Hore Pranjali Hanumant	B. Sc. II
-	20.	Humbe Madhuri Bapu	B. Sc. II
-	21.	Jadhav Vaishnavi Vishwanath	B. Sc. II
	22.	Jamdade Vaishnavi Nitin •	B. Sc. II
	23.	Kadam Pradnya Naganath	B. Sc. II
	24.	Kadam Pratiksha Kamlakar	B. Sc. II
	25.	Kadam Priti Somnath	B. Sc. II
	26.	Kadam Rutuja Ramhari	B. Sc. II
	27.	Kashid Rohit Rajkumar	B. Sc. II
	28.	Kawale Aditya Ankush	B. Sc. II
	29.	Kazi Shaista Tamij	B. Sc. II
1	30.	Khatal Manisha Mohan	B. Sc. II
	31	Kore Shivshankar Surykant	B. Sc. II
	32	. Landage Rohini Chaitanya	B. Sc. II
	33	. Limkar Saurabh Saudagar	B. Sc. II
1	34	. Maske Vaishnavi Dattatray	B. Sc. II
	35	. Misal Shraddha Nandkumar	B. Sc. II
	36	More Chaitali Baliram	B. Sc. II
	37	Mulani Afrin Akbar	B. Sc. II
	38	Muthal Nikita Navanath	B. Sc. II
	39	Naiknaware Snwela Umesh	B. Sc. II

0

2

Chemica

Name :- Deshmukh Bharati Suzjakant.

class :- B.sc. III

Roll no: - 3012

scientist ! - Alfred Werner.

Shri. Shivaji Mahavidyalay, Barshi...

オレード	In modern terminology, werner's primary valence considered to the oxidation state and his secondary valence constants for alled coordination number. The co-cl bonds are not classed as ionic, and each co-N bond is a coordination coralent band between the Lewis acid cost and the Lewis base NH3.
B	rule which state that the difference between the maximum positive and negative valence of an electron is frequently eight. This rule was used later in 1916 coh Gilbert N. Lewis formulated the 'octet rule' in his cubical atom theory.
	In other complexes he found coordination number of 4 or 8. on these views, and other Similar Views, in 1904, Richard Alena formulated robat is more bound on 11 -
a a second s	the co-ordination number which he defined as the no. Of molecules directly linked to the central metal atom.
	long distance, While the co-NH3 bonds which correspond- to a "Secondary" or weaker valance of 6 at shorter
	-sh different types of bond, However, in complexes, such as [co(NHz)] ds for example, Werner considered that the
	Before, Werner, Chemists defined the valance of an
Lancescover	Nature of Valence
¢.	

Chemica

100

NAME - Sarde Madhuri Ramdas Class - B.SC-III Roll No - 3067 Scientist - Alexander Fleming Shri Shivaji Mahavidyalaya Barshi

	Sir Alexander Fleming
Sir Alexander Fleming	FRS FRSE FRCS
Born - 6 <u>August 1881</u> <u>Darvel</u> , East Ayrshire <u>Scotland</u>	
Died - 11 March 1955 Caged 73) London, England	
Citizenship - British	
Alma mater - Royal Polytechnic Institution - St M Hospital Medical School - Imperic College London	lary's
<u>Awards</u> - <u>FRSC1943</u> <u>Nobel Prize (196</u>	icillin [2]
FRCS [Eng] knight Bachelor C1944)	
Scientific career	
<u>Fields</u> - <u>Bacteriology</u> , <u>immunology</u>	

.

Ù

Research

Work before Penicillin

During world war, I Fleming witnessed the death of many soldiers from sepis resulting from infected wounds. Antiseptics, which were used at the time to treat infected wounds, often worsened the injuries. [9] In an article he submitted for the identical medical journal The Lancet during woorld war I, Fleming described an ingenious experiment, which he was able to conduct as a result of his own glass blowing skills, in which he explained why antiseptics were killing more soldiers than infection itself during world war I. Antiseptics worked well on the surface, but deep wounds tended to shelter anaerobic bacteria from the antiseptic agent, f antiseptics seemed to remove beneficial agents produced that protected the Patients in these cases at least as well as they removed bacteria, & did nothing to remove the bacteria that were out of reach. Eiol Sir Almroth Wright strongly supported Fleming's Findings, but despite this, most army physicians over the course of the war continued to use antiseptics even in cases where this worsened the condition of the Patients. [7]

Miracle cure.

Antibiotics

Fleming's accidental discovery & isolation of Penicillin in September 1928 marks the Start of modern antibiotics. Before that, several scientists had published or pointed out that mould or penicillium Sp. were able to inhibit bacterial growth, f even to cure bacterial infections in animals. Ernest Duchesne in 1897 in his thesis " contribution to the study of vital competition in micro-organisms: antagonism between moulds & microbes", [21] or also clodomiro Picado Twight cohose coart at Institut Pasteur in 1923 on the inhibiting action of fungi of the "Penicillin SP" genre in the growth of Staphylococci drew little interest from the direction of the Institut at the time. Fleming was the first to push these studies further by isolating the penicillin, & by being motivated enough to Promote his discovery at a larger scale. Fleming also discovered very early that bacteria developed antibiotic resistance whenever too little penicillin was used or when it was used for too short a Period. Almooth coright had predicted antibiotic Presistance even before it was noticed during experiments. Flemings cautioned about the use of Penicillin in his many speeches around the world. on 26 June 1945, he made the following cautionary Statements." — the microbes are educated to resist Penicillin & a host of penicillin - fast organismis bred out_