Shri Shivaji Mahavidyalaya Barshi Department of Mathematics Home Assignment (18-19)

Class :- B.Sc. III

Subject :- Partial differential equation

- 1) Explain Compatible system of first order equation
- 2) Explain Charpits method for solving the PDE f(x, y, z, p, q) = 0 where x and y are independent variables and $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
- 3) Explain standard form II (Clairout Equation)

Dept. of Mathematics S.S.M. Barshi.

Shri Shivaji Mahavidyalaya Barshi Department of Mathematics

Home Assignment (18-19)

Class :- B.Sc. I Subject :- Algebra

- 1) Solve x y + z = 0 x + 2y - z = 02x + y + 3z = 0
- 2) Describe Non homogenous system of linear equations .
- 3) Test for considtancy

2x + 6y = -11 6x + 20y - 6z = 36y - 18z = -1

- 4) Define eigen values, eigen vector & trace of matrix.
- 5) Is an $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ eigenvector of $\begin{bmatrix} -3 & 1 \\ -3 & 8 \end{bmatrix}$?

Dept. of Mathematics S.S.M. Barshi.

Shri Shivaji Mahavidyalaya Barshi Department of Mathematics

Home Assignment

(18-19)

Class :- B.Sc. II Subject :- Laplace transform

- 1) State and prove Initial Value Theorem
- 2) If F(t) is a function of class A and if $L \{F(t)\} = f(p)$ then

$$L\{t^{n}F(t)\} = (-1)^{n} \frac{d^{n}}{dp^{n}} f(p) \text{ where } n = 1,2,3$$

- 3) State and prove Periodic Functions Fundamental theorem
- 4) Define Inverse a) Laplace transformb) Null transform

5)
$$L^{-1}\left\{\frac{p}{p+2} + \frac{6p}{p^2 - 16} + \frac{3}{p-3}\right\} = ?$$

Dept. of Mathematics S.S.M. Barshi

Department of mathematics. (15-19)

Home Assignment.

Class: T. Y BSc

Paper No -XIV

Paper No -XV

Subject: Metric Spaces.

Paper No -XIII.

1) State and Prove Schwarz inequality.

2) State and Prove Makowski Inequality.

3) Using ε , δ definition prove that $\lim_{x \to 0} \frac{x^2}{x-1} = 2$

Subject: Numerical Analysis.

1) State and prove Newtons forward Interpolation formula.

2)Sate and Prove Lagranges Interpolation formula.

3) State and Prove Simpsond $\left(\frac{3}{8}\right)^{ii}$ rule.

Subject: Graph Theory

1) Prove that in a nondirected graph, the total number of odd degree vertices is even.

2)A simple graph with n vertices and k components can not have more than $\binom{(n-k)(n-k+1)}{2}$ edges.

3)The edge connectivity of a graph G cannot exceed the minimum degree of a vertex in G i.e., $\lambda(G) \le \delta(G)$

Subject: Integral Calculus.

Paper No – XVI.

1) State and Prove Abel test.

2)State and Prove Cauchy test.

3)State and Prove Dirichlet's test.

Dept. of Mathematics S.S.M.Barshi.

Department of mathematics. (19.20)

Home Assignment.

Class: F.Y. BSc

Paper No -III.

Subject: Geometry

1)Find the equation of plane in Normal form.

Find the equation of plane in Intercept form.

3) Find the equation of plane in Three-point form.

Home Assignment.

Class: F.Y. BSc

Subject: Differential Equation.

Paper No -IV.

1) Solve $\tan y dx + \cot y dy = 0$ by Variable separable form.

2) Solve $\frac{dy}{dx} = \sin x$ by using equations reducible to variable separable form.

3) Solve $x \frac{dy}{dx} = y [\log y - \log x + 1]$ by using method of solution of homogeneous equations.

Dept. of Mathematics S.S.M. Berski.

Department of mathematics. (19-20)

Home Assignment.

Class: S. Y BSc

Subject: Differential Equation.

Paper No -VII.

1) Solve p(p+x) = y(x+y) by Variable separable form.

2) Solve $p = \tan\left(x - \frac{p}{1 + p^2}\right)$ by using solvable for x method.

3) Solve xy(y-px) = x + py by using differential equation reducible to Clairaut's equation.

Subject: Abstract Algebra IPaper No –VIII1) In a group G, G is abelian then $(ab)^n = a^n b^n \forall a, b \in G$ for any integer n.2)Prove that the order of symmetric group S_n is n!3)State and prove one step subgroup test.

Dept. of Mathematics S.S.M. Barshi.

Department of mathematics.

Home Assignment. (19-20)

Class: T. Y Bsc

Subject: Real Analysis.

Name of Assistant Professor: Sabale Nanasaheb Vasant

1)Prove that every convergent sequence is bounded.

2)Prove that the set of limit points of a bounded sequence has the greatest and the least members

3)State and prove Bolzano-Weierstrass theorem

4) Prove that a necessary and sufficient condition for the convergence of a monotonic sequence is that it is bounded.

5) State and prove Cauchy's first theorem on limits

Dept. of Mathematics S.S.M. Barshi.

Department of mathematics. (19-20)

Home Assignment.

Class: T. Y BSc

Subject: Metric Spaces.

Paper No -XIII.

1) State and Prove Schwarz inequality.

2) State and Prove Makowski Inequality.

3) Using ε , δ definition prove that $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$

Subject: Numerical Analysis.

1) State and prove Newtons forward Interpolation formula.

2)Sate and Prove Lagranges Interpolation formula.

3) State and Prove Simpsond $\left(\frac{3}{8}\right)^{th}$ rule.

Subject: Graph Theory

1) Prove that in a nondirected graph, the total number of odd degree vertices is even.

2)A simple graph with n vertices and k components can not have more than $\frac{(n-k)(n-k+1)}{2}$ edges.

3)The edge connectivity of a graph G cannot exceed the minimum degree of a vertex in G i.e., $\lambda(G) \leq \delta(G)$

Subject: Integral Calculus.

Paper No – XVI.

1) State and Prove Abel test.

2)State and Prove Cauchy test.

3)State and Prove Dirichlet's test.

Dept. of Mathematics S.S.M. Barshi

Paper No -XV

Paper No -XIV

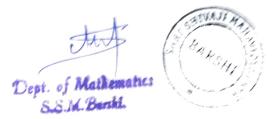
Shri Shivaji Mahavidyalaya Barshi Department of Mathematics (<u>Home Assignment</u> (20-21)

Class :- B.Sc. III

Subject :- Partial differential equation

- 1) Explain Compatible system of first order equation
- 2) Explain Charpits method for solving the PDE f(x, y, z, p, q) = 0 where x and y are independent variables and $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
- 3) Explain standard form II (Clairout Equation)

Dept. of Mailematics



Shri Shivaji Mahavidyalaya Barshi Department of Mathematics

Home Assignment (20 - 21)

Class :- B.Sc. I Subject :- Calculus

Que. Write and describe three Reduction Formulae

Shri Shivaji Mahavidyalaya Barshi Department of mathematics.

Home Assignment. (20-2)

Class: S. Y BSc

Subject: Differential Calculus.

1)Derive formula to calculate the angle between radius vector and tangent.

2)Find formula to calculate length of perpendicular from pole to the tangent.

3) Derive formula to calculate length of tangent, length of normal and length of subnormal at any point on the curve.

4)Derive formula to calculate the pedal equation of the cure in Cartesian form.

5) Derive formula to calculate length of polar sub-tangent and length of polar sun-normal. And solve following examples.

- i) $\frac{1}{r} = 1 + e \cos \theta$
- ii) $\frac{2a}{r} = 1 \cos \theta$

Door. of Mathematics S.S.M. Berchi

Shri Shivaji Mahavidyalaya Barshi Department of Mathematics (21-22)

Home Assignment

Class: B.Sc. I

Subject :- Algebra

- 1) Solve x y + z = 0 x + 2y - z = 02x + y + 3z = 0
- 2) Describe Non homogenous system of linear equations .

3) Test for considtancy

2x + 6y = -11 6x + 20y - 6z = 36y - 18z = -1

4) Define eigen values, eigen vector & trace of matrix.

5) Is an $\left|\frac{1}{4}\right|$ eigenvector of $\left|\frac{-3}{-3}, \frac{1}{8}\right|$?

Dept. of Mathematics S.S.M.:Burshi.

Shri Shivaji Mahavidyalaya Barshi Department of Mathematics (21.22)

Home Assignment

Class :- B.Sc. II Subject :- Laplace transform

- 1) State and prove Initial Value Theorem
- 2) If F(t) is a function of class A and if $L\{F(t)\} = f(p)$ then $L\{t^n F(t)\} = (-1)^n \frac{d^n}{dp^n} f(p)$ where n = 1,2,3
- 3) State and prove Periodic Functions Fundamental theorem
- 4) Define Inverse a) Laplace transformb) Null transform

5)
$$L^{-1}\left\{\frac{p}{p+2} + \frac{6p}{p^2 - 16} + \frac{3}{p-3}\right\} = ?$$

Star BARS

Dept. of Mathematics SMB

Shri Shivaji Mahavidyalaya Barshi Department of mathematics.

Home Assignment. (21-22)

Class: T. Y Bsc

Subject: Complex Analysis.

1)State and prove the necessary and sufficient condition for f(z) to be analytic.

2)Prove that 'The real and imaginary parts of an analytic function satisfy Laplace's equation'.

3)Construct an analytic function for the following function

- i) v = 6xy 5x
- ii) $u = x^2 y^2 2xy 2x + 3y$

4) Find the real part whose imaginary part is:

(a) $x^2 - y^2 + 2y$ (b) $e^{-2xy} \cos(x^2 - y^2)$

5) Prove that "let f(z) be analytic within on a closed contour C, then $\int f(z) dz = 0$

Dept. of Mathematics S.S.In. Barshi.

Shri Shivaji Mahavidyalaya Barshi Department of mathematics. (22-23)

Home Assignment.

Class: F.Y. BSc

Subject: Geometry

Paper No -III.

1)Find the equation of plane in Normal form.

2) Find the equation of plane in Intercept form.

3) Find the equation of plane in Three-point form.

Home Assignment.

Class: F.Y. BSc

Subject: Differential Equation.

Paper No -IV.

1) Solve $\tan y dx + \cot y dy = 0$ by Variable separable form.

2) Solve $\frac{dy}{dx} = \sin x$ by using equations reducible to variable separable

form.

3) Solve $x \frac{dy}{dx} = y [\log y - \log x + 1]$ by using method of solution of homogeneous equations.

Dept. of Mathematics S.S.M. Barchi

Department of mathematics. (22 23)

Home Assignment.

Class: S. Y BSc

Paper No -VII

Subject: Differential Equation.

1) Solve p(p+x) = y(x+y) by Variable separable form.

2) Solve $p = \tan\left(x - \frac{p}{1+p^2}\right)$ by using solvable for x method.

3) Solve xy(y - px) - x + py by using differential equation reducible to Clairaut's equation.

Subject: Abstract Algebra I

Paper No –VIII

1) In a group G, G is abelian then $(ab)^n - a^n b^n \lor a, b \in G$ for any integer n.

2)Prove that the order of symmetric group S_n is n!

3)State and prove one step subgroup test.

Jul Dept. of Mathematics S.S.M. Barshi.

Shri Shivaji Mahavidyalaya Barshi Department of mathematics.

Home Assignment.

Class: T. Y Bsc

Subject: Real Analysis.

Name of Assistant Professor: Sabale Nanasaheb Vasant

1)Prove that every convergent sequence is bounded.

2)Prove that the set of limit points of a bounded sequence has the greatest and the least members

3)State and prove Bolzano-Weierstrass theorem

4) Prove that a necessary and sufficient condition for the convergence of a monotonic sequence is that it is bounded.

5) State and prove Cauchy's first theorem on limits

Dept. of Mathematics S.S.M.Barshi.

	The differential equation $(2x - 3y + 1)dx + (3x + 4y - 1)dy = 0$ is of the form (a) non-homogeneous (b) homogeneous (c) variables separable (d) eract	The general solution of $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 4y = 0$ is (a) $y = c_1e^{-x} + c_2e^{4x}$ (b) $y = c_1e^{-x} + c_2e^{-4x}$ (c) $y = c_1e^{-x} + c_2e^{4x}$ (d) $y = c_1e^{-x} + c_2e^{-4x}$	The expression $x^3 \left(1 + \frac{y}{x} + \frac{y^2}{x^3} + \frac{y^3}{x^3} \right)$ is homogeneous of degree (a) 1 (b) 2 (c) 3 (d) 0	BSC. I Sem. II- Differential Equations Test The time the The time the	Q.1. 2
HAM ICAL	The differential equation $\frac{dy}{dx} = \frac{1}{1+x+y+xy}$ istype. (a) homogeneous (b) exact (c) linear (d) variables separable	The particular solution of $x dy + y dx = 0$ when $x = y = 1$ is (a) $x + y = 2$ (b) $x^2 + y^2 = 1$ (c) $xy = 1$ (d) $xy = 2$	The equation $\frac{dy}{dx} = e^{x+y} + x^2 e^y$ is (a) homogeneous (c) variables separable (d) exact	The equation $\left(y + x \sin \frac{y}{x}\right) dx - x dy = 0$ is type. (a) variables separable (b) non-homogeneous (c) linear (d) homogeneous	$\left(\left \mathcal{F} \left(\left q_{r} \right) \right\rangle \right)$
H.		The particular solution of $\frac{dy}{dx} = 5^{x+y}$ is (a) $5^{x} + 5^{y} = 2$ (b) $5^{x} + 5^{y} = 2$ (c) $5^{-x} + 5^{-y} = 2$ (d) $5^{-x} + 5^{-y} = 2$ (d) $5^{-x} + 5^{-y} = 2$ (e) $5^{-x} + 5^{-y} = 2$ (f) $5^{-x} + 5^{-y} = 2$	A differential equation $\frac{dy}{dx} = \frac{f(x,y)}{g(x,y)}$ is said to be homogeneous if the degree of every term in $f(x,y)$ and $g(x,y)$ is (a) different (b) one (c) some (d) finite	The differential equation $(x + y + 5)dy + (x - y + 1)dx = 0$ is type: (a) variables separable (b) homogeneous (c) exact (d) reducible to homogeneous	Internal Fran
A		5^{x+y} is (b) $5^{x} + 5^{-y} = 2$ (d) $5^{-x} + 5^{y} = 2$	() (i) is said to be homogeneous if the 1 $g(x, y)$ is (b) one (d) finite	5)dy+(x-y+1)dx=0 is (b) homogeneous (d) reductible to homogeneous	ally

.

RAP STAL

Dept. of Mathematics S.S.M.Barshi.

Solution of the equation $p^2 - 7p - 12 = 0$ is a) $y = 4x - c$ (b) $y + 4x + c$ b) $y + 4x + c$ (c) $(y - 3x - c)$ (d) none of these	(a) $y = c_x$ (b) $y = c_x - \frac{2}{c}$ (c) $y = c_x - \frac{2}{c}$ (c) none of these	THE SCHLERCH AF HE AND AND A	<pre>C Winter C = C There V = V = C = C = C = C = C = C = C = C =</pre>	Differential Sequestor's ESC. $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ s = $\frac{1}{2}$ solution then which of	
General solution of the differential equation $\sqrt{y - px} = p$ is (a) $y = cx + c$ (b) $y = x + c^2$ (c) $y = cx + c^2$ (d) none of these	$\begin{aligned} & \frac{d}{dx^2} + p \frac{dy}{dx} + Qy = 0 \text{ is an associated equation, then which of the following is true ? (a) & 1 - P \tan x - Q = 0 then y = \cos x \text{ is a part of C.F.} (b) & 1 + P \tan x - Q = 0 then y = \sin x \text{ is a part of C.F.} (c) & P + Qx = 0 then y = x \text{ is a part of C.F.} (c) & P + Qx = 0 then y = x \text{ is a part of C.F.} \end{aligned}$	λ. 	$\begin{aligned} & \frac{dY}{dx} - 2 \tan x \frac{dy}{dx} + 3y = 2 \sec x \text{ then is a part of C.F.} \\ & (a) y = \cos x \\ & (b) y = e^x \\ & (c) y = \sin x \\ & (d) y = x^m \end{aligned}$	$(2 - x^2) \frac{dx^2}{dx} + x \frac{dx}{dx} - y = x(1 - x^2) \text{ then is a part of C.F.}$ $(a) y = x \qquad (b) y = x^2$ $(c) y = e^x \qquad (d) \text{ none of these}$	
	The differential equation $p^4 - 2xyp + 8x^2 = 0$ is of the type (a) Solvable for x (b) Solvable for y (c) Solvable for p (d) None of these	(a) $y = e^{-x}$ (b) $y = e^{x}$ (c) $y = x$ (d) $y = x^{-1}$	The known solution of the equation $x \frac{d^2y}{dx^2} - (2x - 1) \frac{dy}{dx} + (x - 1) y = 0$ is	The differential equation of the form $y^2 = p_{XY} + f \begin{pmatrix} p_X \\ y \end{pmatrix}$ reduces to Clairaut's form by substitution. (a) $x^2 = u, y^2 = v$ (b) $x = u, y = v$ (c) $x^2 = v^2, y^2 = u^2$ (d) none of these	Infertice forth

APA

Dept. of Mathematics S.S.M. Bashi.

1

Dept. of Mathematics S.S.M.Barshi A

 If A and B are square matrices of the same order, and trimeans trace then (a) tr(AB) = tr(A) · tr(B) (b) tr(AB) = tr(BA) (c) tr(AB) = tr(A) + tr(B) (d) none of these 	T is non-singular if (a) Rank T = {0} (c) dim (V) = 0 (d) None of these	B.Sc. III Mathematics $ Intrimum and memory sets transformations. Then UT is that T: R3 \rightarrow R2 \rightarrow R3 be linear transformations. Then UT is(a) identity (b) invertible(c) not invertible (d) none of these$	
The Let $T: V(R) \rightarrow V_2(R)$ be defined such that $T(a + ib) = (a, b)$ (a) T is one-to-one only (b) T is onto only (c) T is one-to-one and onto (d) none of these	 Let T: U → V be a linear map on vector spaces U and V over T. Then rank (T) + nullity (T) = (a) dim U (b) dim V (c) dim (U ∩ V) (d) dim (U ∪ V) 	In an inner product space $\langle u, v \rangle = \overline{v}$ (a) $\langle \overline{u, v} \rangle$ (b) $\langle \overline{v, u} \rangle$ (c) $\langle \overline{u}, v \rangle$ (d) $\langle u, \overline{v} \rangle$	Norm of inner product space $\ u\ =$ (a) $\sqrt{\langle u, u \rangle}$ (b) $\langle u, u \rangle$ (c) $\langle u, u \rangle^2$ (d) none of these
	in an inner product space. (a) u + v = u + v (c) u + v ≤ u + v (d) none of these	In an inner product space. (a) $ u + v + u - v ^2 = u ^2 + v ^2$ (b) $ u + v ^2 + u - v ^2 = 2(u ^2 + v ^2)$ (c) $ u + v ^2 + u - v ^2 = 2 u v $ (d) none of these	Vector space V is an inner product space iff $u \in V$ (a) $(u, u) = 0 \Rightarrow u = 0$ (c) $(u, u) = 0 \Leftrightarrow u = 0$ (d) none of these

B. L. D

(19-19)

Internal Bran

	(c) tr(AB) = tr(A) + tr(B) (d) none of these Unctor space is defined over an algebraic structure is (R, $\oplus_{10} \otimes_{10} \otimes_{10}$) where R = {0, 2, 4, 6, 8} multiplicative identity	If A and B are square matrices of the same order, and tr means trace (a) one (b) two (a) $\{0\}$ (b) V (a) tr(AB) = tr(BA) (b) tr(AB) = tr(BA) (c) three (d) none of these (c) $\forall x \forall$ (d) none of these		Let $T: R^3 \rightarrow R^2$ and $U: R^2 \rightarrow R^3$ be linear transformations. Then UT is (a) 0. (a) identity (b) invertible (c) 12 (c) not invertible (d) none of these	a suppose (b) unitary space Let T : U \rightarrow V be a linear map on vector spaces U and V over T. Then (a) $x^n = 0$ otient space (d) none of these rank (T) + nullity (T) = (b) dim V (c) $x^n = k$ ole space (d) none of these (a) dim U (b) dim V (c) $x^n = k$ vectors u and v are linearly dependent if one of them is (c) dim (U \cap V) (d) dim (U \cup V) Characteristic of an integral dom	ar dependent _. ₁ y be linear independent ment x in a ring R is idemp	B. Sc. III Mathematics Every field in vector space over (a) linear dependent (b) linear indep (a) group (b) ring (c) may be dependent (d) none of the (a) group (c) field itself (d) none of these A superset of linear dependent vectors is	If V is a set of linear independent vectors, thenA superset of linear dependent set of vectors is(a) $0 \in V$ (b) $1 \in V$ (a) may be linear independent(b) linear independent(c) linear dependent(c)	B.L. D (19-20) . Dytend Ban
(b) 4	R = {0, 2, 4, 6, 8} multiplicative iden	(b) ∨ (d) none of these	(b) left but not right ideal(d) none of these	(b) 2 (d) none of these	(b) x" = x (d) none of these al domain is	(b) linear independent t (d) none of these lempotent if for n, k ∈ Z, x ∈ R	(b) linear independent(d) none of theset vectors is	t of vectors is (b) linear independent (d) none of these ectors is	end Barry

Dept. of Mathematics S.S.M.Barrit

Dept. C. Machematus S.S. M. Bardit.

(c) $x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz = 0$ (d) $x^{2} + y^{2} + z^{2} = a - b - c$	$(b) x^2 + y^2 + z^2 + ax + by + cz = 0$	$(a) x^2 + y^2 + z^2 - ax - by - cz = 0$	The equation of the sphere through the origin and making intercepts a, b, c on coordinate axes is		(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$	term xy then $\theta = \dots$	$3y^2 + 3yy + 3y^2 - 18x - 22y + 50 = 0$ does not contain once product	if hy rotation of axes through an anole o the averagion	(a) sphere (b) plane (c) pair of planes (d) circle	lx + my + nz = p taken together represent a	The two equations $x^2 + y^2 + z^2 + 2i\alpha + 2iy + 2wz + d = 0$ and	$^{(a)}\left(\frac{a}{2},0,0\right) \qquad (b)\left(0,\frac{b}{2},0\right) \qquad (c)\left(0,0,\frac{c}{2}\right) \qquad (d)\left(\frac{a}{2},\frac{b}{2},\frac{c}{2}\right)$	(0, 0, c) and (0, 0, 0) is	The centre of the sphere which passes through $(a, 0, 0)$, $(0, b, 0)$.	(a) $a = b = c$ (b) $a \neq b \neq c$ (c) $a = b \neq c$ (d) $a \neq b = c$	sphere if	The equation $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ represents a	The Solesser	Providence of Mathematics	B.Sc. I Sem. II NTL				R. 10 2 10-20
$(a) \frac{4}{5}$	The radiu	(c) (-3, 2, -4)	(a)(3,2,4)	Centre of	(a) $\left(\frac{1}{2}, \frac{1}{2}\right)$	(5 √3 5	The polar co		$(c) x^2 + y^2 = 4$	(a) $x^2 + x^2 - 4 = 0$	r = 4sinθ is is	(a) x	product term x	$3x^{2} + 2xy + 3y$	If by rotatio		(a) (1, 2, 6)	$x^2 + y^2 + z^2 + z^2$	The point of co		(a) $\left(6, \frac{\sqrt{3}}{2}\right)$ (b) $\left(6, \frac{1}{2}\right)$	The polar coordinates are		,
$\binom{b}{4} = \frac{3}{4}$	s of the sphere 2	, -4)		Centre of the sphere $x^{2} + y^{2} + z^{2} + 6x + 4y + 87 + 35 = 0$	$(a) \left(\frac{1}{2}, \frac{1}{2}\right) (b) \left(\frac{1}{2}, \frac{1}{2}\right) (c) \left(\frac{1}{2}, \frac{1}{2}\right) (d) \left(-\frac{1}{2}, -\frac{1}{2}\right)$) (\ \] \	The polar coordinates (5 30°) then consists coordinates (-		= 4		$r = 4\sin\theta$ is the polar equation of the curve then its cartesian equation is	$\frac{6}{3}$	product term xy then $\theta = \dots$	$3x^2 + 2xy + 3y^2 - 18x - 22y + 55 = 0$ does not contain the cross-	If by rotation of axes through an angle θ , the expression		<i>(b)</i> (1, 2, -6)	$x^{2} + y^{2} + z^{2} + 2x - 4y - 16z + 65 = 0$ is	The point of contact of the spheres $x^2 + y^2 + z^2 + 2x - 4y - 4z - 7 = 0$,			The polar coordinates of point are $\begin{pmatrix} 6, \\ 6 \end{pmatrix}$ then its cartesian coordinates are		
$\begin{pmatrix} c \\ 4 \end{pmatrix}$	$\left(x^2 + y^2 + z^2\right) + 2$	<i>(d)</i> (3	(b) (-	$v^2 + z^2 + 6x + 4$	$(c)\left(\frac{1}{2},\frac{1}{2}\right)$	(1 5)			$(d) x^{2} + y^{2} - xy = 0$	$(h) = x^2 + y^2 - 4x = 0$	of the curve then its	$\frac{(c)}{4}$		0 does not cont	;h an angle θ, t		(c) (1, -2, 6)	0 is	$s x^2 + y^2 + z^2 + 2x$		(c) (3√2, 3)	are $\begin{pmatrix} 6, \frac{-}{6} \end{pmatrix}$ then	(7)	-
$(d) \frac{2}{5}$	The radius of the sphere $2(x^2 + y^2 + z^2) + 2x - 3y + 2z - 1 = 0$.	(d)(3,-2,4)	(b) (-3, -2, -4)	0 - 2C + 28 + V	$(d)\left(-\frac{1}{2},-\frac{1}{2}\right)$	$(\sqrt{3} + 5)$			<u>ب</u> ب = 0	1 0	cartesian equation	$(d) \frac{\pi}{2}$		ain the cross-	he expression		(d) (- 1, 2, 6)		-4y-4z-7=0,		(d) (3, 3/3)	1 its cartesian		

 $+ y^2 - 4y = 0$ $+ y^2 = 4$ $\frac{\sqrt{3}}{1}, \frac{5}{2}$ (b) $\left(\frac{\sqrt{3}}{2}, \frac{5}{2}\right)$ (c) $\left(\frac{1}{2}, \frac{5}{2}\right)$ (d) $\left(-\frac{\sqrt{3}}{2}, -\frac{5}{2}\right)$ erm xy then $\theta = \dots$ tation of axes through an angle heta , the expression $z^2 + 2x - 4y - 16z + 65 = 0$ is of contact of the spheres $x^2 + y^2 + z^2 + 2x - 4y - 4z - 7 = 0$, ar coordinates (5, 30°) then cartesian coordinates are $+3y^2 - 18x - 22y + 55 = 0$ does not contain the cross- θ is the polar equation of the curve then its cartesian equation) (b)(1,2,-6) (c)(1,-2,6) (d)(-1,2,6)(b) $\left(6, \frac{1}{2}\right)$ (c) $(3\sqrt{2}, 3)$ (d) $(3, 3\sqrt{3})$ 6) 1 (6) (c) 4 | 7 $(b) x^2 + y^2 - 4x = 0$ $(d) \ x^2 + y^2 - xy = 0$ $\frac{(d)}{2}$

(a) uu' + vv' + ww' = d + d'

The two spheres $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ and

Internal

1-Adri

4 4

 $x^{2} + y^{2} + z^{2} + 2u'x + 2v'y + 2w'z + d' = 0$ are orthogonal if

c (-3, 2, -4)	a)(3,2,4)	centre of the sphere $x^2 + y$	
(d)(3, -2, 4)	<i>(b)</i> (-3, -2, -4)	Centre of the sphere $x^2 + y^2 + z^2 + 6x + 4y + 8z + 25 = 0$.	

The radius of the sphere	
$2(x^{2} + y^{2} + z^{2}) + 2x - 3y + 2z - 1 = 0.$	

410
(6)
ω 14
(c) 4
#1 01
(d)
512

(a) circle

(b) sphere

(c) plane

(d) line

lx + my + nz = p taken together represent a

The two equations $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ and

The polar equation of $xy = 2$ is (a) $r = \cos \theta$ (c) $r = \sin 2\theta$	The polar form of cartesian equation $x^2 + y^2 = 2\alpha x$ is (a) $r = 3\alpha\cos\theta$ (b) $r = 2\alpha\cos\theta$ (c) $r = \alpha\sin\theta$ (d) $r = 2\alpha\cos\theta$	The equation $8x^2 + 5y^2 - 4xy + 4x - 10y - 31 = 0$ represents (a) Straight line (b) Ellipse (c) Parabola (d) Hyper	The equation $x^2 + 2xy + y^2 - 2x - 1 = 0$ represents (a) a circle (b) an allipse (c) parabola	The polar equation of $x - y = 3$ is (a) $r(\cos\theta + \sin\theta) = 3$ (c) $\cos\theta + \sin\theta = 3$	Centre of sphere $x^2 + y^2 + z^2 + 6x + 4y + 4z + 16 = 0$ will be (a) $(-3, -2, -2)$ (b) $(3, 2, 2)$ (c) $(3, -2, -2)$ (d) $(1, 2, -2)$	 (b) uu'+ wv'+ ww' = 2(d + d') (c) 2(uu'+ w'+ ww') = d + d' (d) None of these
(b) $r = \sin \theta$ (d) $r^2 \sin 2\theta = 4$	$n x^2 + y^2 = 2ax \text{ is}$ $(c) r = a \sin \theta \qquad (d) r = a \cos \theta$	-10y—31=0 represents (c) Parabola (d) Hyperbola	= 0 represents (c) parabola (d) hyperbola	(b) $r(\cos\theta - \sin\theta) = 3$ (d) $r(\cos^2\theta - \sin^2\theta) = 3$	+4y+4z+16 = 0 will be (c) (3, -2, -2) (d) (1, 2, 3)	

The centroid of the triangle lies in the plane $ax + by + cz = 1$ is (a) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ (b) $\left(\frac{1}{3a}, \frac{1}{3b}, \frac{1}{3c}\right)$ (c) $(3a, 3b, 3c)$ (d) $\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$	Angle between two planes $2x - y + z = 6$ and $x + y + 2z = 7$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{5}$	Equation of a plane parallel to z-axis is (a) $ax + by + cz + d = 0$ (b) $ax + by + d = 0$ (c) $by + cz + d = 0$ (d) $ax + cz + d = 0$	An and a second	C. K.S.
Equation of the plane through the intersection of two planes $P_1 = 0$ and $P_2 = 0$ is (a) $P_1P_2 = 0$ (b) $P_1 + kP_2 = 0$ (c) $P_1 = 0 = P_2$ (d) None of these	Two plane $A_1x + B_1y + C_1z + D_1 = 0$ and $A_3x + B_3y + C_2z + D_2 = 0$ are parallel if (a) $A_1A_2 + B_1B_2 + C_1C_2 = 0$ (b) $\frac{A_1}{A_2} + \frac{B_1}{B_2} + \frac{C_1}{C_2} = 0$ (c) $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ (d) None of these	The distance between the parallel planes $A_1 x + B_1 y + C_1 z + D_1 = 0$ and $A_1 x + B_1 y + C_1 z + D_1' = 0$ is (a) $\frac{ D_1 - D_1' }{\sqrt{A_1^2 + B_1^2 + C_1^2}}$ (b) $\frac{ D_1 + D_1' }{\sqrt{A_1^2 + B_1^2 + C_1^2}}$	The number of arbitrary constants in the equation Ax + By + Cz + D = 0 is (a) 1 (b) 2 (c) 3 (d) 4	(19-20)
SHRI SHIVAJI AD AD AD AD AD AD AD AD AD AD AD AD AD	The distance between the parallel planes $2x - 2y + z + 1 = 0$ and 4x - 4y + 2z + 3 = 0 is (a) $\frac{1}{6}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) 0	The length of perpendicular from a point (x', y', z') to a plane Ax + By + Cz + D = 0 is (a) $Ax' + By' + Cz' + D$ (b) $\frac{Ax' + By' + Cz' + D}{A' + B' + C'}$ (c) $\frac{Ax' + By' + Cz' + D}{\sqrt{A' + B' + C'}}$ (d) None of these	The length of the perpendicular from origin to the plane 12x + 4y + 3z + 26 = 0 is (a) 12 (b) 2 (c) 26 (d) 4	Internal Ban

Dept. of Mathematics S.S.M. Barshi 9 (

1

(U.G.) Department of Mathematics

Internal Examination (2020-21)

Class - B.Sc. I

g*

Subject - Algebra

Date – 10 Dec 2021

Paper no. - |

Que. Choose the correct answer for each of the following.

1] If characteristic equation of matrix A is $\lambda^3 - 2\lambda^2 + 3 = 0$ then find $A^{-1} = ?$

a) $A^3 + 2A$	b) $-\frac{1}{3}(A^2-2A)$
c) $-\frac{1}{3}(A^3-2A^2)$	d) $2A^2 + A + 3$

2] If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$$
 then $A^3 = \dots$
a) $\begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$
b) $\begin{bmatrix} 15 & -21 \\ 10 & -3 \end{bmatrix}$
c) $\begin{bmatrix} -7 & 30 \\ 60 & -67 \end{bmatrix}$
d) $\begin{bmatrix} 7 & 30 \\ 60 & 37 \end{bmatrix}$

3] If A =
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 then find $A^3 - 5A^2 + 7A$.
a) $A^2 + 5A$
b) 0
c) $A^3 + 7A$
d) $-5A + 7I$

4] Matrix A is invertible if and only if

a) $ A = 0$	b) $ A \neq 0$
c) $A = A'$	d) $A^2 = I$

Dept. of Mathematics S.S.M.Barshi.

〕)ころ ロロー*と n*-matrix then **is symmetric matrix**

a)
$$\frac{1}{2}(A - A')$$

b) $\frac{1}{2}(A + A')$
c) $\frac{1}{3}(A - A')$
d) $\frac{1}{4}(A + A')$

and (2) all - a

6) The inverse of the matrix is $\begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix}$ a) $\begin{bmatrix} 1/2 & 0 \\ 1/8 & 1/4 \end{bmatrix}$ b) $\begin{bmatrix} 1/2 & 0 \\ -1/8 & 1/4 \end{bmatrix}$ c) $\begin{bmatrix} 1/2 & -1/8 \\ 0 & 1/4 \end{bmatrix}$ d) $\begin{bmatrix} -1/2 & 1/8 \\ 0 & -1/4 \end{bmatrix}$

7] The characteristic polynomial of matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a) $\lambda^2 - 5\lambda - 2$ b) λ^2 c) λ^3 d) $\lambda^2 + 5\lambda - 2$

8] A square matrix is called an idempotent matrix if

a) $A^2 = A$ b) $A^2 = I$ c) $A^T = A$ d) $A^n = 0$

9] Find the trace of matrix
$$\begin{bmatrix} 1 & 2 & 4 & 3 \\ 5 & 5 & 2 & 1 \\ 7 & 9 & -2 & 3 \\ 0 & 1 & 0 & 3 \end{bmatrix}$$

a) 7
c) 11
b) 10
d) 9

din ang 	 I have all the Splane Splane Departure Postal I have Splane Splane Splane Departure Postal 	C for a construction of the construction	(- top) (top) (- top) (Nour	E Liter of B Typeride O Joseph Daries and Learner	$L = \left\{ \int_{-\infty}^{\infty} F(x) dx \right\}_{x = 1}^{\infty} = \left\{ \int_{-\infty}^{\infty$		B.L. D. 20-21.
(a) $\left(\frac{1}{p^{2}+q^{2}}\right)^{2}$ (c) $\frac{2a_{1}p}{p^{2}-q^{2}}\right)^{2}$ (c) $\frac{1}{p^{2}-q^{2}}\right)^{2}$ (c) $\frac{1}{p^{2}-q^{2}}\right)^{2}$ (d) Maso (e) $\frac{1}{2}$ (f) $\frac{1}{p^{2}}$ (f) $\frac{1}{p^{2}-q^{2}}$ (f) $\frac{1}{p^{2}-q^{2}}$ (f) $\frac{1}{p^{2}-q^{2}}$ (f) $\frac{1}{p^{2}}$ (f) $\frac{1}{p^{2}-q^{2}}$ (f) $\frac{1}{p^{2}}$ (f) $\frac{1}{p^{2}-q^{2}}$ (g) $\frac{1}{p^{2}-$	L [2 e ³¹ - e ³¹]: (a) <u>f+2</u> (b) <u>f+2</u> , p3 (c) <u>f-2</u> ; (d) Now in the ften (b) ften-Fcon (c) ften+Fcon (d) Now.	$\begin{array}{c} 1 L 1 1 1 1 1 1 1 1 $	$ = L \left[cos st \right] : \cdot $	$ \underbrace{ \left[\begin{array}{c} L \left\{ t^{3} \in \overline{\mathcal{A}}^{\mathcal{H}} \right\}^{2} \cdots \right]}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}}_{\left(\underline{p+s}\right)^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}{c} 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}[c] 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}[c] 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}}_{\left(\underline{p+s}\right)^{s}} \underbrace{ \left[\begin{array}[c] 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}} \underbrace{ \left[\begin{array}[c] 0 \\ \underline{f}^{2} + s \end{array}\right]^{s}} \underbrace{ \left[\begin{array}[c] 0 \\ \underline{f}^$	(i) (j)	$ (O_{\mathcal{A}}^{(n)}, \mathbb{Z}^{U} \ d_{U} \ \dots \ function if n > 0 [f_{\mathcal{A}}^{(n)} e^{A_{U}}] \dots $ $ (O_{\mathcal{A}}^{(n)}, \mathbb{Q}) (O_{\mathcal{A}}^{(n)}, \mathbb{Q}) (O_{\mathcal{A}}^{(n)}, \mathbb{Q}) (O_{\mathcal{A}}^{(n)}, \mathbb{Q}) = $	020-21

*

Ŧ

	Linear span of empty set is (a) {1} (b) {0} (c) V (d) none of these	Every field in vector space over (a) group (c) field itself (d) none of these	if V is a set of linear independent vectors, then (a) 0 ∈ V (b) 1 ∈ V (c) 0 ∉ V (d) 1 ∉ V	A superset of linear dependent vectors is (a) linear dependent (b) linear independent (c) may be linear independent (d) none of these	B.Sc. III Mathematics'	, Th' S
Dept. of S.S.J	Any two vectors u and v are linearly dependent if one of them is multiple. (a) scalar (b) vector (c) even (d) none of these	Vector space is defined over an algebraic structure (a) Group (b) Field (c) Ring (d) None of these	 (c) three 	linear dependent oset of linear independent vec inear dependent nay be dependent	 (a) dim W = n (b) dim W ≤ n (c) dim W < n (d) dim W ≥ n A superset of linear dependent set of vectors is (a) may be linear independent (b) linear independent 	It wis a subspace of n-dimensional vector space then
Mathematics	Intersection of two subspaces S_1 and S_2 of a vector space $V(F)$ (a) always a subspace (b) not a subspace (c) iff $S_1 \subset S_2$ or $S_2 \subset S_1$ (d) none of these	A subspace of V(F) other than V(F) is known as subspace. (a) zero (b) improper (c) proper (d) null	A basis of a vector space cannot contain (a) a non-zero vector (b) positive vector (c) zero vector (d) negative vector	The dimension of V(F) of complex number over a field of complex number is (a) 2 (b) 0 (c) 1 (d) infinite	The dimension of V(F) of complex number over a field of real number is (a) 2 (b) 1 (c) 0 (d) infinite	

s.

R BAN	(c) 8	(d)	(C)
(b) 4	(a) 2	(b) Field	For a ring R of real numbers, if $(\mathbf{Z}, +, \cdot)$ and $(\mathbf{Q}, +, \cdot)$ are subrings then (a)
the ring (R, Θ_{10} , Θ_{10}) where R = {0, 2, 4, 6, 8} multiplicative identity	In the ring (R, \oplus_{10} , \otimes_{10}) where R is	Vector space is defined over an algebraic structure	(d) none of these
		(c) three (d) none of these	
(d) none of these	(c) √×√	(a) one (b) two	Vec If A and B are square matrices of the same order, and tr means trace (a)
(d)	$V \times \{0\}$ is a isomorphic to	ici onno has hinany operation.	(c) T is one-to-one and onto (d) none of these (c)
(d) none of these	(a) both left and right ideal(c) right but not left ideal	T is non-singular ^{IT} (a) Rank T = {0} (c) dim (V) = 0 (d) None of these	(a, b)
	An ideal is	(c) not invertible (d) none of these	of these
(d) none of these	(c) 12	Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ and $U : \mathbb{R}^2 \to \mathbb{R}^3$ be linear transformations. Then U is (b) invertible (b) invertible	rectors ti and v are linearly dependent. (b) vector
ral domain ^{is} (b) 2	Cha	(a) dim U (c) dim (U ∩ V) (d) dim (U ∪ V)	
		Let $T : U \rightarrow V$ be a linear map on vector space V rank (T) + nullity (T) = (b) dim V	W is a subspace of vector space v(r), with space (b) unitary space
(d) none of these	(a)	(c) dim V - difference (c) and V over T. Then	
ľ, ľ	An element x in a ring R is idempotent if for n, $K \in (X_{r})$	(a) dim V + dim W (b) dim (v + dim W (d) none of these	 (b) non-linear dependent (d) non-linear dependent
	(c) may be linear independent	ace of vector space \	
(b) linear line of these	(a) linear dependent	(c) field itself (d) none of these	, Ill Mathematics
nt vectors is	·		
(d) none of these	(a) linear dependent	refield in vector space over	
vectors is (b) linear independent	S	(a) 0 ∈ V (d) 1 ∈ V (c) 0 ∈ V	
	(a) files - (c) linear dependent	t of linear independence	
(b) linear independent	A superset of linear independent	Lost vectors, then	1 12-02) ILL'IL

Dept. of Mathematics S.S.M.Barshi,

×

Shri Shivaji Mahavidyalaya Barshi Department of Mathematics.

Class - B Sr II Marks - 10 Sub - Abstract Algebra I Paper No - VIII Name Of Student:			mal Exam 202		
Name Of Student: Redl Number: 1) Order of Permutation group S_n is				Marks -10	
Roll Number: 1) Order of Permutation group S_n is	Sub – Abstract	Algebra I		Paper No -	- V]]].
1) Order of Permutation group S_n is	Name Of Stud	ent:			
A) $n!$ B) $(n-1)!$ C) $(n+1)!$ D) n 2) The order of dihedral group D_n is	Roll Number:				
A) $n!$ B) $(n-1)!$ C) $(n+1)!$ D) n 2) The order of dihedral group D_n is	1) Order of Per	mutation group S_n is			
A) n B) $n-1$ C) $2n$ D) $n+1$ B) $G = (Z, -)$ is not a group since it does not satisfy property A) Closure. B) Associativity C) ldentity D) Inverse. 4) A subset Hof group (G, \cdot) is subgroup if $\forall a, b \in H$ A) $a \cdot b \in H$ B) $a \cdot b = b \cdot a$ C) $a \cdot b^+ \in H$ D) none of the these. 5) $G = (Z, \cdot)$ is not group since property does not hold. A) Associativity B) Closure C) Inverse D) Identity 6) A group (C, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_j the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group A) $(Z, +)$ B) (Q, \cdot) C) $(N, +)$ D) S_a 9) In group $G \sim (Z_n, +_s)$ Inverse of an element 3 is Inverse of an element 3 is					
A) n B) $n-1$ C) $2n$ D) $n+1$ B) $G = (Z, -)$ is not a group since it does not satisfy property A) Closure. B) Associativity C) ldentity D) Inverse. 4) A subset Hof group (G, \cdot) is subgroup if $\forall a, b \in H$ A) $a \cdot b \in H$ B) $a \cdot b = b \cdot a$ C) $a \cdot b^+ \in H$ D) none of the these. 5) $G = (Z, \cdot)$ is not group since property does not hold. A) Associativity B) Closure C) Inverse D) Identity 6) A group (C, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_j the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group A) $(Z, +)$ B) (Q, \cdot) C) $(N, +)$ D) S_a 9) In group $G \sim (Z_n, +_s)$ Inverse of an element 3 is Inverse of an element 3 is	2)The order of	dihedral group <i>D</i> , is			[]
A) Closure. B) Associativity C) Identity D) Inverse. 4) A subset H of group (G, \cdot) is subgroup if $\forall a, b \in H$ Image: A b a b a b a b a b a b a b a b a b a b				D) n+1	
4) A subset H of group (G, \cdot) is subgroup if $\forall a, b \in H$ A) $a \cdot b \in H$ B) $a \cdot b = b \cdot a$ C) $a \cdot b^{-1} \in H$ D) none of the these. 5) $G = (Z, \cdot)$ is not group since property does not hold. A) Associativity B) Closure C) Inverse D) Identity 6) A group (G, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_a the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group A) $(Z, +)$ B) (Q, \cdot) C) $(N, +)$ D) S_a 9) In group $G = (Z_i, +_i)$ inverse of an element 3 is 1 $B = \frac{1}{2}$ $C = (Z_i, +_i)$ inverse of an element 3 is	3) $G = (Z, -)$	is not a group since it doe	s not satisfy	_propeny	
A) $a \cdot b \in H$ B) $a \cdot b = b \cdot a$ C) $a \cdot b^{-1} \in H$ D) none of the these. 5) $C = (Z, \cdot)$ is not group since property does not hold. A) Associativity B) Closure C) Inverse D) Identity 6) A group (G, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_j the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is					
5) $C = \{Z, \cdot\}$ is not group since property does not hold. A) Associativity B) Closure C) Inverse D) Identity 6) A group (C, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_1 the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group A) (Z, \neg) B) (Q, \cdot) C) $(N, +)$ D) S_n 9) In group $C < (Z_1, +_2)$ inverse of an element 3 is	4)A subset Ha	of group (G, •) is subgrou	$up \text{ if } \forall a b \in H$		
A) Associativity B) Closure C) Inverse D) Identity 6) A group (G, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_j the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is	A) <i>s</i> ⋅b∈ <i>H</i>	B) $a \cdot b = b \cdot a$	C) $a \cdot b^{-1} \in H$	D) none of the these	<u>ا</u>
6) A group (G, \cdot) is said to be abelian if $\forall a, b \in G$ A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_i the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group A) $(Z, +)$ B) (Q, \cdot) C) $(N, +)$ D) S_a 9) In group $C \circ (Z_i, +_i)$ inverse of an element 3 is	5) <i>G</i> = (<i>Z</i> , ·) is	s not group since	property does not	hold.	
A) $a \cdot b = b \cdot a$ B) $a \cdot b^{-1} = b \cdot a^{-1}$ C) $a^{-1} \cdot b = b^{-1} \cdot a$ D) none of these. 7) In permutation group S_j the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ is A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group Aj $(Z, +)$ B) $(Q, +)$ C) $(N, +)$ D) S_n 9) In group $G \circ \{Z_{i}, +_{i}\}$ inverse of an element 3 is	A) Associativi	y B) Closure	C) Inverse	D) Identity	
7) In permutation group S_j the order of an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ Is	6) A group (<i>G</i>	. ·) is said to be abelian if	$\forall a, b \in G$		
A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group (Z, +) (Z, -) (C) (N, +) (D) S_a 9) In group $C \sim (Z_0, +_0)$ inverse of an element 3 is (D) S_a (D) S_a	A) $a \cdot b = b \cdot a$	B) $a \cdot b^{-1} = b \cdot a^{-1}$	C) $a^{-1} \cdot b = b^{-1} \cdot a$	D) none of these.	
A) 2 B) 1 C) 3 D) 4 8) Which of the following is not group (Z, +) (Z, -) (C) (N, +) (D) S_a 9) In group $C \sim (Z_0, +_0)$ inverse of an element 3 is (D) S_a (D) S_a					
8) Which of the following is not group $A)(Z, +) B)(Q, +) C)(N, +) D) S_n$ 9) In group $G \circ (Z_s, +_s)$ inverse of an element 3 is	7) In permutat	on group S ₃ the order of	an element $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$) is	
A) (Z, \rightarrow) B) (Q, γ) C) $(N, +)$ D) S_n 9) In group $G \circ (Z_{\zeta}, +_{\zeta})$ inverse of an element 3 is	A) 2	B) 1	C) 3	D) 4	
9) In group $G \circ (Z_{S^{-}} +_{S})$ inverse of an element 3 is	8) Which of th	e following is not group			
	$\mathbb{A}J(Z, \prec)$	B)(Q, ·)	C)(N, +)	D) <i>S</i> _n	
	9)In group C	$\{Z_{i}, +_{i}\}$ inverse of an e	dement 3 is		
a second se				D) 4	
	(0) Which of (he following is group			Out
(0) Which of the following is group $Dept.$					

Shri Shivaji Mahavidyalaya Barshi

R.f. III - 2021-22

Department of Mathematics.

Internal Exam.

Day and date: Wednesday, 11/05/22 Subject: Numerical Analysis. Marks: 20 Class - T. Y. B. Sc (XIV) Instructions: 1) All questions are compulsory. 2) Figure to the right indicate full marks. 3)Use of Scientific calculators are allowed. Q.1. Fill In the blanks by choosing correct alternatives given below. (any five) 5 1) The $(n+1)^{\text{th}}$ order forward difference of nth degree polynomial is? D) None of these. C) two B) zero A) one 2) The relation between E, Δ , and ∇ is D) None of these. C) $\Delta = E\nabla$ $\mathbf{A})\,\Delta = \mathbf{1} - E$ B) $\Delta = \nabla$ 3) If the given data is not equally space and interpolation is near the beginning of the data then Interpolation is Used. B) Newtons forward difference A) Lagrange's D) None of these. C) Newtons Backward difference. 4)The value of $\triangle^{*}e^{x} =$ _____, the interval of differencing being 1. B) $(e-1)^{n} e^{x}$ A) $(e+1)^{n} e^{x}$ $D)ne^{x}$ $C)e^{i}$ 5) The n^{ii} forward difference of f(x) is given by B) $\Delta^{n-1} f(x+h) - \Delta^{n-1} f(x)$ A) $\Delta^{*} f(x+h) - \Delta^{n-1} f(x)$ $C(\Delta^{n+1} f(x+h) - \Delta f(x))$ D) None of these. 6) The value of $\left(\frac{\Delta^2}{E}\right)e^t =$ _____ A) $e^{-i}\Delta^2 e^i$ B) $e^{h}\Delta^{2}e^{x}$ C) e" 1e D) None of these. Dept. of Mathematics S.S.M. Barshi.

Q.2.Attempt any two of the following:

1)State newtons forward Interpolation formula.

2)Evaluate $\Delta^2(ab^x)$

3) With Usual notation prove that $\Delta = E\nabla = \nabla E$

Q.3.Attempt any two of the following.

1)Find f(10) by using Lagrange's formula for

X		1	9	
f(x)	12	13	14	16

2)Using Newtons forward formula find the value of f(1.6) if

X		1.4		
f(x)	3.49	4.82	5.96	6.5

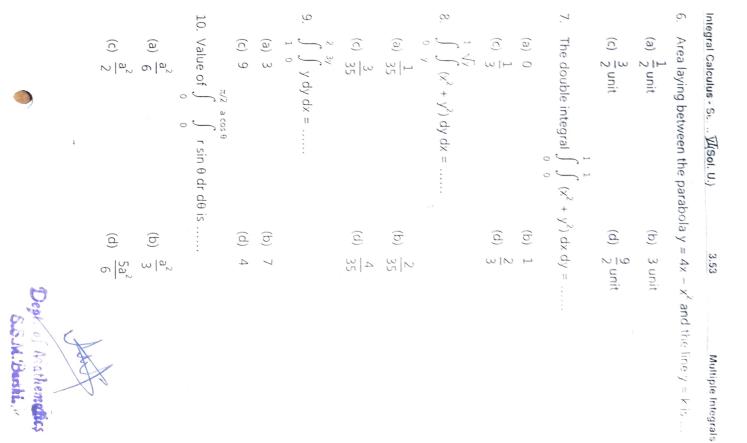
3)Prove that $e^x = \left(\frac{\Delta^2}{E}\right)e^x \cdot \frac{Ee^x}{\Delta^2 e^x}$, the interval of differencing being h.

Q.4. Attempt any One of the following.

1) State and prove Lagrange's Interpolation formula for unequal intervals.

2)State and Prove Newtons backward Interpolation formula.

3) Find f(22) from the Gauss forward formula:


ſ	X	20	25	30	35	40	45	
+		054	222	201	260	231	204	

6

5

 $4. \int_{1}^{2} \int_{0}^{3y} y \, dy dx = \dots$ ----- will any algulaya, Barshi B. Sc- II I (2021 - 2022) Maths 2. Value of $\int_{1}^{2} \int_{0}^{1/2} y \, dy \, dx$ is equal to ω Value of $\int_{0}^{1} \int_{0}^{1} (x^2 + y^2) dx dy is$ (c) $\int_{0}^{\pi/2} \frac{\sin^2 \theta}{2} d\theta$ Value of $\int_{1}^{a} \int_{1}^{b} \frac{1}{xy} dx dy = \dots$ (c) 7 (a) 3 (c) <u>2</u> $\stackrel{(a)}{=} \frac{7}{6}$ (c) (log a) (log b) (a) log (ab) (a) $\int \sin \theta \, d\theta$ Choose the correct alternative for each of the following : $\int_{-\infty}^{\pi/2} \int_{-\infty}^{\pi/6} r \, d\theta \, dr \text{ is equal to } \dots \dots$ $(-1^2 + b^2)$ College Internal Examination 6 (d) 5 đ (d) $a^2b^2(a + 1)$ (b) $\log\left(\frac{a}{b}\right)$ (b) $\int_{0}^{\sin \theta} \frac{1}{2} \pi r dr$ 0 a (d) none of these $\frac{ab}{3}(a^2+b^2)$ log b wIV OIH

The state of the second s

B.Je. I - 2021-22

(U.G.) Department of Mathematics

Internal Examination (2020-224)

Class - B.Sc. I

Subject - Algebra

Date – 10 Dec 2021

Paper no. - |

Que. Choose the correct answer for each of the following.

1] If characteristic equation of matrix A is $\lambda^3 - 2\lambda^2 + 3 = 0$ then find $A^{-1} = ?$

a) $A^3 + 2A$ b) $-\frac{1}{3}(A^2 - 2A)$ c) $-\frac{1}{3}(A^3 - 2A^2)$ d) $2A^2 + A + 3$

2] If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & -3 \end{bmatrix}$$
 then $A^3 = \dots$
a) $\begin{bmatrix} 9 & -4 \\ -8 & 17 \end{bmatrix}$
b) $\begin{bmatrix} 15 & -21 \\ 10 & -3 \end{bmatrix}$
c) $\begin{bmatrix} -7 & 30 \\ 60 & -67 \end{bmatrix}$
d) $\begin{bmatrix} 7 & 30 \\ 60 & 37 \end{bmatrix}$

3) If A =
$$\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 then find $A^3 - 5A^2 + 7A$.
a) $A^2 + 5A$
b) 0
c) $A^3 + 7A$
d) $-5A + 7I$

4) Matrix A is invertible if and only if

a) |A| = 0b) $|A| \neq 0$ d) $A^2 = I$

Dept. of Mathematics S.S.M. Barshi.

Department of Mathematics

Internal Exam (2022-23)

Class: B.sc-II

Marks: 10

[02]

[08]

S.S.M. Barshi.

Subject: Laplace Transform -

Date: / /2023

Paper Number: VI

Q.1 Fill in the blanks by choosing correct alternatives given below: 1. If $L{F(t)} = f(p)$ then $L{F''(t)}$ =-----a) pf(p) - F(0) - F'(0)b) $p^2f(p) - pF(0) - F'(0)$ c) $p^2 f(p) - pF'(0) - F(0)$ d) $p^2 f(p) - F(0) - F'(0)$ 2. $\int_0^\infty t e^{-3t} sint dt =$ -----a) $\frac{3}{50}$ b) $\frac{3}{25}$ c) $\frac{2}{50}$ d) $\frac{124}{125}$ Q.2 Solve any four of the followings. 1. Find $L\{t(3sin2t - 2cos2t)\}$ 2. If $L{F(t)} = f(p)$ then show that $L\left\{\frac{F(t)}{t}\right\} = \int_{p}^{\infty} f(x) dx$ 3. If $L{F(t)} = f(p)$ then show that $L{F(at)} = \frac{1}{a}f\left(\frac{p}{a}\right)$ 4. Find the Laplace transform of the following periodic function $F(t) = \begin{cases} 1, & 0 < t < 1\\ -1, & 1 < t < 2 \end{cases}$ Extended periodically with period 2. 5. Find $L\{F(t)\}$ if $F(t) = \begin{cases} cos\left(t - \frac{2\pi}{3}\right), \ t > \frac{2\pi}{3}\\ 0, \ t < \frac{2\pi}{3} \end{cases}$ 6. Prove that $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\} = \log\left(\frac{p+b}{p+a}\right)$ Dept. of Mathematics 7. Find $L\{(t+2)^2 e^t\}$

Department of Mathematics

Internal Examination(2022 - 23)

Class - F. Y. B.Sc Subject - Algebra Date - 21/11/22 Mark-10

Paper number: |

10M

Q.1. Attempt any five of the following

1) find the value of $(1+2i)(1+3i)(2+i)^{-1}$

2)Find modulus and argument of $z = -\sqrt{3} + i$

3)Write the complex number $z = 1 + \sqrt{3}i$ in polar form.

4) find all values of $(1+i)^{\frac{1}{3}}$

5)Write the complex number z = -1+i in polar form.

6) write the expansion of $\cos 5\theta$ in terms of powers of trigonometric ratio of θ

7) State Demoivre's theorem.

8) write the expansion of $\sin 4\theta$ in terms of powers of trigonometric ratio of θ

Shri Shivaji Mahavidyalaya, Barshi

Department of Mathematics

Internal Examination(2022 - 23)

Class – F. Y. B.Sc	Subject – Algebra	Date – 21/11/22	Mark-10	Paper number: I
--------------------	-------------------	------------------------	----------------	-----------------

Q.1. Attempt any five of the following

1) find the value of $(1+2i)(1+3i)(2+i)^{-1}$

2) Find modulus and argument of $z = -\sqrt{3} + i$

3)Write the complex number $z = 1 + \sqrt{3}i$ in polar form.

4) find all values of $(1+i)^{\frac{1}{3}}$

5)Write the complex number z = -1 + i in polar form.

6)write the expansion of $\cos 5\theta$ in terms of powers of trigonometric ratio of θ

7) State Demoivre's theorem.

8) write the expansion of $\sin 4\theta$ in terms of powers of trigonometric ratio of θ .

Dept. of Mathematics S.S.M. Barshi.

10M

<u>Shri. Shivaji Mahavidyalaya, Barshi</u> <u>Department of Mathematics</u> Internal Exam (2022-23)

Class: B.sc-III Subject: Real Analysis Paper number: X **Marks:** 10

Date: / /2023

Q.1 Solve any Four of the followings:

1. Show that $\sqrt{8}$ is not a rational number.

2. If A and B are countable then show that $A \times B$ is countable.

3. Show that countable union of countable sets is countable.

4. Show that every convergent sequence is bounded.

5. Show that every monotonic increasing bounded is convergent.

Dept. of Mathematics S.S.M.Barshi.

[10]

<u>Shri. Shivaji Mahavidyalaya, Barshi</u>

Department of Mathematics

Internal Exam (2022-23)

Class: B.sc-III

Marks: 10

Date: / /2023

Subject: Algebra II Paper Number: IX

Q.1 Fill in the blanks by choosing correct alternatives given below:[05]1. Which is not a ring?a) $(\mathbb{R}, +, \cdot)$ b) $(\mathbb{Z}, +, \cdot)$ c) $(\mathbb{N}, +, \cdot)$ d) $(\mathbb{Q}, +, \cdot)$ 2. For $a \in R$, suppose that b and c are inverses of a thena) b.c = 1b) b = cc) b + c = 0d) None of these

3. Which is not a necessary condition for ring R with respect to multiplication.

a) R is semi-group b) R is monoid c) R is group d) Both a & b

- 4. If R is a ring, then which is must be true?
- a) Each element of R has additive inverse.

b) Each element of R has multiplicative inverse.

c) R has multiplicative identity.

d) R is abelian group with respect to multiplication.

5. If R is ring, then which is not true?

a) a.(b + c) = a.b + a.c b) (b + c).a = b.a + c.a c) a.0 = 0 d) $a.a^{-1} = 0$

Q.2 Solve any five of the followings.

Let R be a ring and $a, b, c \in R$

- 1. The zero element (0) of R is unique.
- 2. Each element of R has a unique negative.
- 3. State and prove right cancellation law.
- 4. (-a).(-b) = a.b
- 5. a.(-b) = (-a).b = -(a.b)

6. Prove that a ring has at most one unity.

[05]

Shri SHINDE M. Y. Department of mathematics S. S. M. Barshi Date:- 25/04/2019.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2018 – 19

This completion report is given on this 25th day April 2019.

Head of Maths Dept. Shri Shivaji Matanidyalaya, Barsi, 41 - 11

Shri Talekar S. D. Department of mathematics S. S. M. Barshi Date:- 25/04/2019.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2018 – 19

This completion report is given on this 25th day April 2019.

Head of Maths Dept. Shri Shivaji Mahamdyalaya: Barsi, 411-411

Shri DURE A. A.

Department of mathematics

S. S. M. Barshi

Date:- 25/04/2019.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2018 – 19

This completion report is given on this 25th day April 2019.

Head of Haths Dept. Shri Shivaji Mata idyalaya. Barsi, 41, 411

Shri SHINDE M. Y. Department of mathematics S. S. M. Barshi Date:- 25/04/2020.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2019 - 20

This completion report is given on this 25th day April 2020.

Head of Mathe Dept. Shri Shivaji Mahamdyalaya, Barsi, 43 11

Shri Khadtare A. B. Department of mathematics S. S. M. Barshi Date:- 25/04/2020.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2019 - 20

This completion report is given on this 25th day April 2020.

Head of Matths. Dept. Shri Shivaji Mahandyalava,

Shri Khadtare A. B. Department of mathematics S. S. M. Barshi Date:- 25/04/2020.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2019 – 20

This completion report is given on this 25th day April 2020.

Head of Matths. Dept.

Shri Shivaji Maha Idyalava, Barsi, 41 - 11

Shri. Shinde M. Y. Department of Mathematics S. S. M. Barshi Date:- 25/07/2021.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2020 - 21

This completion report is given on this 25th day July 202.

Remark: Due To covid Pandemic Syllabus completed by online method.

Name And Sign

HOD Dept of Mathematics

Dept. of Mathematics S.S.M.Barshi.

Shri Sabale N. V. Department of mathematics S. S. M. Barshi Date:- 25/07/2022.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2021 - 22

This completion report is given on this 25^{th} day July 2022.

Remark: Due To covid Pandemic Syllabus completed by online method from Aug 2021 to Feb 2022.

Name and Sign

Asst professor

Name and Sign

HOD Dept of Mathematics

Dept. of Mathematics S.S.M.Barshi.

Shri. Shinde M. Y. Department of mathematics S. S. M. Barshi Date:- 25/07/2022.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2021 - 22

This completion report is given on this 25th day July 2022.

Remark: Due To covid Pandemic Syllabus completed by online method fron Aug 2021 to Feb 2022.

Name And Sign HOD Dept of Mathematics Dept. of Mathematics S.S.M. Barshi.

Miss Javir P. S. Department of mathematics S. S. M. Barshi Date:- 25/07/2022.

То

The principal

S. S. M. Barshi

Sub: - Syllabus completion report

R/S

I have satisfactorily completed the prescribed syllabus of B.Sc. part I, II and III according to the workload assigned to me in the academic year 2021 - 22

This completion report is given on this 25th day July 2022.

Remark: Due To covid Pandemic Syllabus completed by online method from Aug 2021 to Feb 2022.

Name and Sign

(BINY MI)

Asst professor

Name and Sign

HOD Dept of Mathematics

Dept. of Mathematics S.S.M. Barshi. Shri. Sabale N.V. Department of Mathematics Shri. Shivaji Mahavidyalaya, Barshi Date: 30/05/2023

То

The Principal,

Shri. Shivaji Mahavidyalaya, Barshi

Subject: Syllabus Completion Report

Respected Mam/Sir,

I have satisfactorily completed the prescribed syllabus of B.Sc. I, II & III according to the workload assigned to me in the academic year 2022-2023.

This completion report is given on this 30th day May 2023.

Your's Faithfully

Mabale (Mr. Sabale N.V.)

Shri. Shinde M.Y. Department of Mathematics Shri. Shivaji Mahavidyalaya, Barshi Date: 30/05/2023

То

The Principal,

Shri. Shivaji Mahavidyalaya, Barshi

Subject: Syllabus Completion Report

Respected Mam/Sir,

I have satisfactorily completed the prescribed syllabus of B.Sc. I, II & III according to the workload assigned to me in the academic year 2022-2023.

This completion report is given on this 30th day May 2023.

Your's Faithfully

(Mr. Shinde M.Y.)

Shri. Sathe R.R. Department of Mathematics Shri. Shivaji Mahavidyalaya, Barshi Date: 30/05/2023

То

The Principal,

Shri. Shivaji Mahavidyalaya, Barshi

Subject: Syllabus Completion Report

Respected Mam/Sir,

I have satisfactorily completed the prescribed syllabus of B.Sc. I, II & III according to the workload assigned to me in the academic year 2022-2023.

This completion report is given on this 30th day May 2023.

Your's Faithfully

Both

(Mr. Sathe R.R.)

Department of Mathematics

Yearly Teaching planning

Academic Year: 2018-19

Name of Teacher: Shinde M. Y.

Class: BSc.1

Subject: Calculus and Geometry.

Paper No: II and III

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Differentiation.	
3	August	25	12	Functions of Two Variables.	
4	September	26	13	Reduction formulae.	
5	October	24	12	Vector calculus.	
6	November	24		Diwali Vacation.	
7	December	25	13	Change of Axis.	Extra lectures
8	January	24	12	Plane.	Extra lectures
9	February	20	10	Sphere.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD: M of of Matthe Own Chimme Maks Healths

Department of Mathematics

Yearly Teaching planning

Academic Year: 2018-19

Paper No: I and IV

Name of Teacher: Talekar S.D.

Class: BSc.I

Subject: Algebra and Differential Equation.

Sr Month Working Periods **Teaching Topics** Remarks No. days Available 1 June Admission Process. 2 July 26 13 Matrices. 3 25 August 12 Linear Equations. September 4 26 13 Complex Number. 5 October 24 12 Transcendental Functions. November 6 24 Diwali Vacation 7 December 25 13 Diff equation Unit I Extra lectures January 8 24 12 Diff equation unit II Extra lectures 9 February 20 10 Diff equation Unit III and Extra Unit IV. lectures March University Practical exam. 10 11 April University Exam.

Signature of Teachers:

Signature of HOD

Talekars S. D.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2018-19

Name of Teacher: Dure A. A.

Class: BSc.II

Subject: Real Analysis and Differential Equations. Paper No: VI and VII

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Real Numbers.	
3	August	25	12	Real Sequences.	
4	September	26	13	Infinite Series.	
5	October	24	12	Infinite Series.	, i
6	November	24		Diwali Vacation.	
7	December	25	13	Diff equation unit I.	Extra lectures
8	January	24	12	Diff equation unit II and Unit III.	Extra lectures
9	February	20	10	Diff equation unit IV.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Dure A.A.

dead of Maths Dept.

Barsi, 41 .11

Department of Mathematics

Yearly Teaching planning

Academic Year: 2019-20

Name of Teacher: Shinde M. Y.

Class: BSc.III

Subject: Integral Calculus and Programming in C. Paper No:XI and XVI

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Improper Integral.	
3	August	25	12	Improper Integral.	
4	September	26	13	Betta and Gamma function.	
5	October	24	12	Multiple integral.	
6	November	24		Diwali Vaccation.	
7	December	25	12	Overview of C. Unit I and II	Extra lectures
8	January	24	12	Unit no III, IV and V	Extra lectures
9	February	20	10	Unit no VI, VII and VIII	Extra lectures
10	March			University Practical Exam	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD: Yoard of Haths Dept. Shri Shivaji Mahavidyaloya, Barsi. 413.411

Department of Mathematics

Yearly Teaching planning

Academic Year: 2019-20

Name of Teacher: Khadatare A. B.

Class: BSc.III

Subject: Complex Analysis Numerical Analysis. Paper No:X and XIV

Month	Working days	Periods Available	Teaching Topics	Remarks
June			Admission Process.	
July	26	13	Analytic Functions.	
August	25	12	Complex Integration,	
September	26	13	Complex Integration,	
October	24	12	Calculus of Residues.	
November	24		Diwali Vacation.	
December	25	13	Finite Differences, And Interpolation.	Extra lectures
January	24	12	Numerical Differentiation and Integration.	Extra lectures
February	20	10	Difference equations.	Extra lectures
March			University Practical exam.	
April			University Exam.	
	June July August September October November December January February March	daysJuneJuly26August25September26October24December25January24February20March	daysAvailableJune2613July2613August2512September2613October2412November2412December2513January2412February2010March	Image: Analytic FunctionJune2613Admission Process.July2613Analytic Functions.August2512Complex Integration.September2613Complex Integration.October2412Calculus of Residues.November2412Diwali Vacation.December2513Finite Differences. And Interpolation.January2412Numerical Differentiation and Integration.February2010Difference equations.MarchI.I.University Practical exam.

Signature of Teachers: Khadatare A.B. Signature of HOD:

Department of Mathematics

Yearly Teaching planning

Academic Year: 2019-20

Name of Teacher: Surwase D. M.

Class: BSc.III

Subject: PDE and Metric Space.

Paper No: XII and XIII

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June	, v		Admission Process.	
2	July	26	13	Linear PDE. Of order one.	
3	August	25	12	Nonlinear PDE of order one.	
4	September	26	13	Linear PDE with constant coefficient.	
5	October	24	12	Linear PDE with constant coefficient.	-
6	November	24		Diwali Vacation.	
7	December	25	13	Limits and Metric Spaces.	Extra lectures
8	January	24	12	Continuous functions on metric spaces.	Extra lectures
9	February	20	10	Completeness and compactness.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

٦

Signature of Teachers:

Signature of HOD:

Surware D.M.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2019-20

Class: BSc.III

Name of Teacher: Surwase D. M.

Paper No:IX and XV

Subject: Algebra II and Integral Transform.

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Introduction to Rings.	
3	August	25	12	Ouotient Rings and Vector Spaces	
4	September	26	13	Linear Transformation and Matrices.	
5	October	24	12	Inner product space.	
6	November	24		Diwali Vacation.	
7	December	25	13	Laplace Transform.	Extra lectures
8	January	24	12	The Inverse Laplace Transform.	Extra lectures
9	February	20	10	Application of Laplace Transform.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD:

Surware D.M.

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y. Subject: Calculus and Geometry.

v

Class: BSc.I

Paper No: II and III

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Differentiation.	
3	August	25	12	Functions of Two Variables.	
4	September	26	13	Reduction formulae.	
5	October	24	12	Vector calculus.	
6	November	24		Diwali Vacation.	
7	December	25	13	Change of Axis.	Extra
8	January	24	12	Plane.	lectures Extra lectures
9	February	20	10	Sphere.	Extra lectures
10	March			University Practical exam.	
11	April -			University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Matkematics S.S.M. Bashi.

Yearly Teaching planning Name of Teacher: Shri Shine M. Y.

Academic Year: 2020-21

Subject: Algebra and Differential Equation.

Class: BSc.J

Paper No: 1 and 1V

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June		Available	Admission Process.	
2	July	26	13	Matrices.	
3	August ~	25	12	Linear Equations.	
4	September	26	13	Complex Number.	
5	October	24	12	Transcendental Functions.	
6	November	24		Diwali Vacation.	
7	December	25	13	Diff equation Unit I	Extra
8	January	24	12	Diff equation unit II	lectures Extra lectures
9	February.	20	10	Diff equation Unit III and Unit IV.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD Dept. of Mathematics S.S.M.Barshi.

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y.

Class: BSc.II

Subject: Laplace Transform and Differential Equations. Paper No: VI and VII

Sr	Month 💂	Working	Periods	Teaching Topics	Remarks
No.		days	Available		
1	June			Admission Process.	
2	July	26	13	Laplace Transform.	
3	August	25	12	The Inverse Laplace Transform.	
4	September	26	13	Application of Laplace Transform.	
5	October	24	12	Application of Laplace Transform.	
6	November	24		Diwali Vacation.	
7	December	25	13	Laplace Transform.	Extra lectures
8	January	24	12	The Inverse Laplace Transform.	Extra lectures
9	February	20	10	Application of Laplace Transform.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of weathematics S.S.M. Barshi.

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y.

Class: BSc.II

Subject: Differential Calculus and Abstract Algebra I Paper No: V and VIII

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June	uujs		Admission Process.	
2	July	26	13	Tangents and Normals.	
3	August	25	12	Curvature.	
4	September	26	13	Jacobians	
5	October	24	12	Maxima and Minima.	
6	November	24		Diwali Vacation.	
7	December	25	13	Introduction to groups.	Extra lectures
8	January	24	12	Equivalence, Congruence Divisibility.	Extra lectures
9	February	20	10	Groups and Group Homomorphism.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD:

Dept. of Mathematics S.S.M. Barshi.

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y.

Class: BSc.III

Subject: Complex analysis and metric space.

Paper No: X and XIII

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	August	25		Admission Process.	
2	Septembèr.	24			
3	October	23	6	Analytic Functions.	
4	November.	16	12	Complex Integration.	
5	December.	25	18	Calculus of Residue.	
6	January	25	18	Calculus of residue.	
7	February	23	17	Limits and Metric Spaces.	
8	March +	25	17	Continuous functions on metric spaces.	
9	April	23	17	Continuous functions on metric spaces.	
10	May	24	10	Completeness and compactness.	
11	Jun	26		University Practical Exam.	
12	July	26		University Exam.	

Signature of Teachers:

Signature of HOD:

Dept. of Mathematics S.S.M. Barshi.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y.

Class: BSc.III

Paper No:IX and XIV

Subject: Algebra II and Numerical Analysis

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Introduction to Rings.	
3	August	25	12	Ouotient Rings and Vector Spaces	
4	September	26	13	Linear Transformation and Matrices.	
5	October	24	12	Inner product space.	
6	November	24		Diwali Vacation.	
7	December	25	13	Finite Differences. And Interpolation.	Extra lectures
8	January	24	12	Numerical Differentiation and Integration.	Extra lectures
9	February	20	10	Difference Equations.	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M. Bershi.

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y Subject: PDE and Integral Transform.

Class: BSc.III

Paper No: XII and XV

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June	U		Admission Process.	
2	July	26	13	Linear PDE. Of order one.	
3	August	25	12	Nonlinear PDE of order one.	
4	September	26	13	Linear PDE with constant coefficient.	
5	October	24	12	Linear PDE with constant coefficient.	
6	November	24		Diwali Vacation.	
7	December	25	13	Laplace Transform.	Extra lectures
8	January	24	12	The inverse Laplace transform	Extra lectures
9	February	20	10	Application of Laplace transforms	Extra lectures
10	March			University Practical exam.	
11	April			University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematic; S.S.M. Barshi.

Yearly Teaching planning

Academic Year: 2020-21

Name of Teacher: Shinde M. Y.

Class: BSc.III

Paper No:XI and XVI

Subject: Integral Calculus and Programming in C.

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	June			Admission Process.	
2	July	26	13	Improper Integral.	
3	August	25	12	Improper Integral.	
4	September	26	13	Betta and Gamma function.	
5	October	24	12	Multiple integral.	
6	November	24		Diwali Vaccation.	
7	December	25	12	Overview of C. Unit I and II	Extra lectures
8	January	24	12	Unit no III, IV and V	Extra lectures
9	February	20	10	Unit no VI, VII and VIII	Extra lectures
10	March			University Practical Exam	
11	April			University Exam.	

Signature of Teachers:

Dep. Organis Sa.m. Barshi.

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Shinde M. Y.

Class: BSc.III

Subject: Algebra II and Integral Calculus

Paper No:IX and XVI

Sr	Month	Working	Periods	Teaching Topics	Remarks
No.		days	Available		
1	August	25		Admission Process.	
2	September	24	13	Introduction to Rings.	
3	October	25	12	Ouotient Rings and Vector Spaces	
4	November	16	10	Linear Transformation and Matrices.	
5	December	25	12	Inner product space.	
6	January	25	12	Improper Integral.	
7	February	22	10	Improper Integral.	
8	March	25	12	Beta and Gamma Function.	
9	April	23	11	Multiple Integral.	
10	May	- 24	10	Multiple Integral.	
11	June.	26		University Practical exam.	
12	July	26		University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M. Basshi

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Sabale N. V.

Class: BSc.III

Subject: Real Analysis and Numerical Analysis.

Paper No: XI and XIV

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	August	25		Admission Process.	
2	September	24			
3	October	23	6	Real Numbers.	
4	November	16	12	Real Sequences.	
7	December	25	18	Infinite Series.	
8	January	25	18	Infinite Series.	
9	February	23	17	Finite differences.	
10	March	25	17	Interpolation.	
11	April	23	17	Numerical differentiation and Integration.	
12	May	24	10	Difference Equations.	
13	Jun			University Practical Exam	
14	July			University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M. Barshi.

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Sabale N. V.

Class: BSc.III

Subject: Complex analysis and metric space.

Paper No: X and XIII

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remar ks
1	August	25		Admission Process.	ม่มมีสุขามาของรามครามและ
2	September.	24			la 🖗 esta con constante e contra la contra d
3	October	23	6	Analytic Functions.	a alfganin soora di sa aara a sa s
4	November.	16	12	Complex Integration.	
5	December.	25	18	Calculus of Residue.	
6	January	25	18	Calculus of Residue.	
7	February	23	17	Limits and Metric Spaces.	
8	March	25	17	Continuous functions on metric spaces.	
9	April	23	17	Continuous functions on metric spaces.	
10	May	24	10	Completeness and compactness.	
11	Jun	26		University Practical Exam.	
12	July	26		University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M. Berth

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Javir P. S.

Class: BSc.III

Subject: PDE and Graph Theory

Paper No: XII and XV

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	August	25		Admission Process.	
2	Septmber.	24			
2	October.	23	6	Linear PDE. Of order one.	Extra Lecture.
3	November	16	8	Nonlinear PDE of order one.	Extra Lecture.
4	December	25	13	Linear PDE with constant coefficient.	Extra Lecture.
5	January	25	13	Linear PDE with constant coefficient.	Extra Lecture.
6	February	23	12	Graph theory.	
7	March	25	13	Operations on Graphs	
8	April	23	11	Trees.	
9	May	24	12	Number system.	
10	June	26		University Practical exam.	
11	July	26		University Exam.	

e gê se e e e

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M. Barshi.

This

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Sabale N. V.

Class: BSc.II

Subject: Differential Calculus and Abstract Algebra I Paper No: V and VIII

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remar ks
1	August	25		Admission Process.	N3
2	September.	24		·	
3	October	23	6	Tangents and Normals.	
4	November.	16	12	Curvature.	
5	December.	25	18	Jacobian.	
6	January	25	18	Maxima and Minima.	
7	February	23	17	Introduction to groups.	
8	March	25	17	Equivalence, Congruence Divisibility.	
9	April	23	17	Groups and Group Homomorphism.	
10	May	24	10	Groups and Group Homomorphism.	
11	Jun -	26		University Practical Exam.	
12	July	26		University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M.Barshi,

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Javir P. S.

Class: BSc.II

Subject: Laplace Transform and Differential Equations. Paper No: VI and VII

Sr	Month	Working	Periods	Teaching Topics	Remarks
No.		days	Available		
1	August	25		Admission Process.	
2	Septmber.	24			
2	October	23	6	Laplace Transform.	
3	November	16	8	The Inverse Laplace Transform.	
4	December	25	13	The Inverse Laplace Transform.	
5	January	25	13	Application of Laplace Transform.	
6	February	23	12	Diif Equation Unit 1	
7	March	25	13	Diif Equation Unit 2	
8	April	23	11	Diif Equation Unit 3	
9	May	24	12	Diif Equation Unit 4 and 5	
10	Jun	26		University Practical exam.	
11	July	26		University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M.Burshi.

Shri Shivaji Mahavidyalaya Barshi Department of Mathematics

Yearly Teaching planning

Academic Year: 2021-22

Name of Teacher: Shinde M. Y.

Class: BSc.I

Subject: Calculus and Geometry.

Paper No: II and III

Sr	Month	Working	Periods	Teaching Topics	Remarks
No.		days	Available		
1	August	25		Admission Process.	
2	September	24	13	Differentiation.	
3	October	25	12	Functions of Two Variables.	
4	November	16	10	Reduction formulae.	
5	December	25	12	Vector calculus.	
6	January	25	12	Vector calculus.	
7	February	22	10	Change of Axis.	
8	March	25	12	Plane.	
9	April	23	11	Sphere.	
10	May	24	10	Sphere.	
11	June.	26		University Practical exam.	
12	July	26		University Exam.	

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M. Burshi.

Shri Shivaji Mahavidyalaya Bar**shi** Department of Mathematics

Yearly Teaching planning

Name of Teacher: Javir P. S.

Academic Year: 2021-22

Class: BSc.1

Subject: Algebra and Differential Equation

.Paper No: 1 and IV

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	August	25	Topperson,	Admission Process,	
2	Septmber.	24	terre de la constante de	annound and the second and the second of the second s	
2	October	23	6	Matrices	
3	November	16	8	Linear equations	
4	December	25	13	Complex number	
5	January	25	13	Transcendental functions	27 Pr In Strand Statistical Activity of the Strand Statistical Strands and Strands Strands and Strands Strands and Strands Strands Strands and Strands S
6	February	23	12	Diff Equation Unit 1 (A)	
7	March	25	13	Diff Equation Unit 1(B)	
8	April	23	11	Diff Equation Unit 2 (A)	
9	May	24	12	Diff Equation Unit 2 (B)	
10	Jun	26		University Practical exam.	
11	July	26		University Exam.	na gana shika sa na na matana kanawanan sa sa sa sa sa sa

Signature of Teachers:

Signature of HOD: Dept. of Mathematics S.S.M.Barshi.

The

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Paper No: V

Name of Teacher: Shri Shinde M. Y.

Class: B.Sc-II (Sem-III)

Subject: Differential Calculus.

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	July			Admission Process.	-
2	August	23	23	Tangents and Normal.	-
3	September	26	26	Curvature, Jacobian.	-
4	October	16	12	Maxima and Minima.	-
5	November	21	11	Revision, Previous year paper solving.	-

Signature of Teacher

Signature of HOD

Dept. of Mathematics S.S.M. Bershi.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Name of Teacher: Shri Shinde M.Y.

Class: B.Sc-III (Sem-VI)

Subject: Integral Calculus.

Paper No: XVI

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	December	19	10	Improper integrals.	
2	January	25	14		-
		20	14	Improper Integrals.	-
3	February	23	11	Beta and commo for di	
4	March	24	11	Beta and gamma function.	-
5	April	21		Multiple Integrals.	-
6	1		11	Multiple integrals.	-
0	May	25	13	Revision, Previous year paper	-
				Solving.	

Signature of Teacher

Signature of HOD

Dept. of Mathematics S.S.M.Bershi.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Name of Teacher: Mr. Shinde M.Y.

Class: B.Sc-I (Sem-I)

Subject: Calculus

Paper No: II

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	July			Admission Process.	-
2	August	23	21	Differentiation, Functions of two variables.	-
3	September	26	20	Reduction formulae.	
4	October	16	09	Vector calculus.	
5	November	21	07	Revision, previous year paper Solving.	-

Signature of Teacher

Ar per & Bar Samo A. Same

Signature of HOD

Dept. of Mathematics S.S.M. Barshi.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Name of Teacher: Mr. Shinde M.Y.

Class: B.Sc-I (Sem-II) Paper No: III

Subject: Geometry

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	December	19	07	Change of Axis	
2	January	25	08	Sphere.	-
3	February	23	07	Plane.	
4	March	24	09	Plane	-
5	April	21	06	Revision.	-
6	May	25	07		-
-		25	07	Previous Question Paper Solving.	-

Signature of Teacher

The of Addington Secol V.S.

Signature of HOD

Dept. of Mathematics S.S.M. Bershi,

Department of Mathematics

Yearly Teaching planning Academic Year: 2022-23

Name of Teacher: Mr. Sabale Nanasaheb Vasant.

Subject: Algebra

Class: B.Sc-I (Sem-I)

Paper No: I

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	July			Admission Process.	
2	August	23	-		
3	September	26	-		
4	October	16	03	Matrices, Linear Equations	Extra lectures
5	November	21	10	Complex Number, Introduction to groups.	Extra lectures

Signature of Teacher

Signature of HOD

Dept. of Mathematics S.S.M. Barshi

And the second sec

and the second sec

<u>Shri. Shivaji Mahavidyalaya, Barshi</u>

Department of Mathematics

Yearly Teaching planning

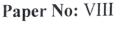
Academic Year: 2022-23

Class: B.Sc-II (Sem-IV)

Name of Teacher: Mr. Sabale Nanasaheb Vasant. Subject: Abstract Algebra.

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	December	19	09	Introduction to groups.	_
2	January	25	14	Equivalence, congruence, Divisibility.	-
3	February	23	12	Groups.	
4	March	24	10	Groups.	-
5	April	21	11	Group Homomorphism.	-
6	May	25	14	Group Homomorphism.	-

Signature of Teacher


Blags of Alasti massi. 85% Ronki

Signature of HOD

Dept. of Mathematics S.S.M. Barshi.

100

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Name of Teacher: Mr. Sabale Nanasaheb Vasant.Class: B.Sc-III (Sem-V)Subject: Real AnalysisPaper No: XI

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	July			Admission Process.	
2	August	23	-	_	
3	September	26	-		
4	October	16	05	Set and Function.	Extra
5	November	21	21	Sequences of Real number, Series of Real Number.	lectures Extra lectures

SUME

Signature of Teacher

Signature of HOD

Dept. of Mathematics S.S.M.Bershi.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23 Class: B.Sc-III (Sem-V) -

Name of Teacher: Mr. Sabale Nanasaheb Vasant.

Subject: Complex Analysis.

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	July	U		Admission Process.	
2	August	23	-		
3	September	26	-		Frature
4	October	16	08	Analytic Functions.	Extra lectures
5	November	21	21	Complex integration, calculus of Residues.	Extra lectures

Signature of Teacher

ing and the second s Second s Signature of HOD

Dept. of Mathematics S.S.M. Burshi.

Paper No: X

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23 Class: B.Sc-II (Sem-III)

Name of Teacher: Mr. Sathe Rohit Rajendra

Subject: Laplace Transform

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	July	, see a second sec		Admission Process.	
2	August	23	-		
3	September	26	-		Extra
4	October	16	08	Laplace Transform	lectures
5	November	21	11	The Inverse Laplace Transform Application of Laplace Transforms	Extra lectures

(8gM

Signature of Teacher

Signature of HOD Dept. of Mathematics S.S.M.Barshi.

Paper No: VI

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Name of Teacher: Mr. Sathe Rohit Rajendra

Subject: Differential Equations

Paper No: VII

Class: B.Sc-II (Sem-IV)

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	December	19	10	Differential equations of the first	
2	January	25	11	order and of degree higher than the first	6
3	February	23	11	Linear Equations of the second order Removal of the first order	-
1	March	24	10	equations equations	-
5	April May	21	10	Equations reducible to homogeneous form Total Differential Equations	-
		20	11	Condition for exactness	-

Signature of Teacher

Signature of HOD Dept. of Mathematics S.S.M. Barshi

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Class: B.Sc-III (Sem-V)

Name of Teacher: Mr. Sathe Rohit Rajendra

Subject: Algebra-II

Remarks **Teaching Topics** Working Periods Month Sr No. Available days Admission Process. July 1 23 _ 2 August 3 26 September _ Introduction to Rings Extra 08 4 October 16 lectures Quotient Rings Vector Spaces Extra 10 November 21 5 Linear Transformation and lectures matrices Inner product space

Rom

Signature of Teacher

いいかく美好ない

Signature of **HOD**

Dept. of Mathematics S.S.M.Barski.

Paper No: IX

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Name of Teacher: Mr. Sathe Rohit Rajendra

Subject: Partial Differential Equations

Class: B.Sc-III (Sem-V)

Paper No: XII

Month	Working days	Periods Available	Teaching Topics	Remarks
July			Admission Process.	
August	23	-		
September	26			
October	16	08	Linear partial differential	Exter
November	21	11	equation of order one Non linear partial differential equation of order one Linear partial differential with constant coefficient	Extra lectures Extra lectures
	July August September October	JulyWorking daysJuly23September26October16	August23-September26-October1608	JulyPeriods daysTeaching TopicsJulyAugust23.September26.October1608November2111Non linear partial differential equation of order one Linear partial differential

RM Signature of Teacher

Signature of HOD Dept. of Mathematics S.S.M. Bushi.

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Class: B.Sc-III (Sem-VI)

Name of Teacher: Mr. Sathe Rohit Rajendra

Subject: Metric Spaces

Remarks **Teaching Topics** Sr Working Periods Month Available No. days Limits and metric spaces 09 December 1 19 -2 25 Limit of a function January 11 -3 February 23 12 Continuous functions on metric spaces 4 March 24 13 Open sets and closed sets -5 April 21 10 Completeness _ 6 May 25 12 Compactness _

(80M Signature of Teacher

Signature of HOD

Dept. of Mathematics S.S.M.Bershi.

Paper No: XIII

Department of Mathematics

Yearly Teaching planning

Academic Year: 2022-23

Class: B.Sc-III (Sem-VI)

Name of Teacher: Mr.Sabale Nanasaheb Vasant.

Subject: Numerical Analysis.

Sr No.	Month	Working days	Periods Available	Teaching Topics	Remarks
1	December	19	09	Finite Differences.	-
2	January	25	12	Interpolation.	-
3	February	23	11	Numerical Differentiation.	-
4	March	24	12	Numerical Differentiation.	-
5	April	21	10	Numerical Integration.	-
6	May	25	12	Numerical Integration.	-

(Jabale Signature of Teacher

> 1949 - Calendra Carlos La Carl Carl

Signature of HOD

Dept. of Mathematics S.S.M. Barshi.

1

Paper No: XIV

Department of Mathematics

Academic Year: 2022-23

Yearly Teaching planning Name of Teacher: Mr.Sabale Nanasaheb Vasant. Subject: Graph Theory.

Sr	Month	Working	1 0110	Teaching Topics	Remarks
No.		days	Available	Graph Theory.	-
1	December	19	10	Operations on Graph.	- 9
2	January	25	13		
		23	12	Operations on Graph.	-
3	February	23	12	Tree.	_
4	March	21	11	Tree.	_
5 6	April May	25	13	Tree, Number Systems.	

Signature of Teacher

1.6.18 - 2.7 1.5 k

Signature of HOD

Dept. of Mathematics S.S.M. Barshi.

Paper No: XVI

Department of Mathematics

Time Table-2018 – 19

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
9.40 to 1.00			BSc-II (Pr) (MYS)	BSc-II (Pr) (MYS)		
11.20		BSc-I (MYS)				BSc-I (TSD)
12.10	BSc-I (MYS) BSc-III (DAA)	BSc-III (DAA)	BSc-III (DAA)	BSc-III (DAA)	BSc-I (TSD) BSc-III (DAA)	BSc-III (DAA)
1.00	BSc-III (TSD)	BSc-III (TSD)	BSc-III(TSD)	BSc-I (TSD) BSc-III (MYS)	BSc-III (MYS)	BSc-III (MYS)
1.50					BSc-II (TSD)	BSc-II (TSD)
2.40			BSc-II (DAA)	BSc-II (TSD)		
3.30						
4.20	BSc-II (DAA)	BSc-II (DAA)				
1.50 - 6.00	BSc-III (Pr) (MYS)	BSc-III (Pr) (MYS)			BSc-III (Pr) (MYS)	BSc-I (Pr) (MYS)

Teachers Name:

1) Shinde M.Y.

2)Talekar S.D

3)Dure A. A.

Read of Maths Dopt. Shri Shivaji Mahavedyaleve. Barsh 42 - 191

Department of Mathematics

Time Table-2019 – 20

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
9.40 to 1.00			BSc-II (Pr) (MYS)	BSc-II (Pr) (MYS)		
11.20		BSc-I (MYS)				BSc-I (KAB)
12.10	BSc-I (MYS) BSc-III (SDM)	BSc-III (SDM)	BSc-III (SDM)	BSc-III (SDM)	BSc-I (KAB) BSc-III (SDM)	BSc-III (SDM)
1.00	BSc-III (KAB)	BSc-III (KAB)	BSc-III(KAB)	BSc-I (KAB) BSc-III (MYS)	BSc-III (MYS)	BSc-III (MYS)
1.50	_				BSc-II (KAB)	BSc-II (KAB)
2.40			BSc-II (SDM)	BSc-II (KAB)		
3.30						
4.20	BSc-II (SDM)	BSc-II (SDM)				
1.50 - 6.00	BSc-III (Pr) (MYS)	BSc-III (Pr) (MYS)			BSc-III (Pr) (MYS)	BSc-I (Pr) (MYS)

Teachers Name:

1) Shinde M.Y.

2)Khadatare A.B.

3)Surwase D.M.

Meant of Mathis Depr

Bhel Stiveji Mal and**yaleya**. Barsi, 410-411

Department of Mathematics

Time Table-2020 – 21

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
9.40 to 1.00			BSc-II (Pr) (MYS)	BSc-II (Pr) (MYS)		
11.20		BSc-I (MYS)				
12.10	BSc-I (MYS) BSc-III	BSc-III	BSc-III	BSc-III (MYS)	BSc-I BSc-III (MYS)	BSc-III (MYS)
1.00	BSc-III	BSc-III	BSc-I (MYS) BSc-III	BSc-I BSc-III	BSc-III	BSc-III
1.50					BSc-II (MYS)	BSc-II
2.40			BSc-II (MYS)	BSc-II (MYS)		
3.30						
4.20	BSc-II	BSc-II				
1.50 - 6.00	BSc-III (Pr) (MYS)	BSc-III (Pr) (MYS)			BSc-III (Pr) (MYS)	BSc-I (Pr) (MYS)

Teachers Name:

1) Shri Shinde M. Y.

Shri Shivaji Mahamdyalaya. Barsi, 41,011

Department of Mathematics

<u>Time Table-2021 – 22</u>

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
9.40 to 1.00			BSc-II (Pr) (MYS)	BSc-II (Pr) (MYS)		
11.20		BSc-I (PSJ)			·	
12.10	BSc-I (MYS) BSc-III (PSJ)	BSc-III (PSJ)	BSc-III (PSJ)	BSc-III (MYS)	BSc-I (PSJ) BSc-III (MYS)	BSc-III (MYS)
1.00	BSc-III (NVS)	BSc-III (NVS)	BSc-I (MYS) BSc-III (NVS)	BSc-I (PSJ) BSc-III (NVS)	BSc-III (NVS)	BSc-III (NVS)
1.50					BSc-II (PSJ)	BSc-II (PSJ)
2.40			BSc-II (NVS)	BSc-II (PSJ)		
3.30						
4.20	BSc-II (NVS)	BSc-II (NVS)				
1.50 - 6.00	BSc-III (Pr) (MYS)	BSc-III (Pr) (MYS)			BSc-III (Pr) (MYS)	BSc-I (Pr) (MYS)

Teachers Name:

1) Shri Shinde M. Y.

2) Shri Sabale N. V.

3) Miss Javir P. S.

Dept. of Mathematics S.S.M. Barshis

Department of Mathematics

Department Timetable (2022-23)

SEM-I

Theory Timetable

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
11.20 to					B.Sc. I	B.Sc. I
12.10					(MYS)	(MYS)
12.10 to	B.Sc. III	B.Sc. III	B.Sc. III	B.Sc. III	B.Sc. III	B.Sc. III
01.00	(NVS)	(NVS)	(NVS)	(NVS)	(NVS)	(NVS) .
01.00 to	B.Sc. III	B.Sc. III	B.Sc. I(NVS)	B.Sc. III	B.Sc. III	B.Sc. III
01.50	(RRS)	(RRS)	B.Sc.III(RRS)	(RRS)	(RRS)	(RRS)
01.50 to	B.Sc. I	B.Sc. I			B.Sc. II	B.Sc. II
02.40	(NVS)	(NVS)			(RRS)	(RRS)
02.40 to			B.Sc. II	B.Sc. II		
03.30			(MYS)	(RRS)		
04.20 to	B.Sc. II	B.Sc. II				
05.10	(MYS)	(MYS)				

Practical Timetable

Time	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
09.40 to			B.Sc. II	B.Sc. II		
01.00			(MYS)	(MYS)		
02.40 to	B.Sc. I					
06.00	(MYS)					
01.50 t0		B.Sc. III			B.Sc. III	
06.00		(MYS)			(MYS)	

MYS	Prof. Shinde M.Y.
NVS	Mr. Sable N.V.
RRS	Mr. Sathe R.R.

HOD

Department of Mathematics

Dept. of Mathematics S.S.M.Barshi.

0

8

Department of Mathematics

Work-Load Distribution (2018-19)

Class	Paper No.	Name of the Teacher
	l – Algebra	Shri Talekar S. D.
B. Sc .I	II - Calculus	Shri Shinde M. Y.
	III - Geometry	Shri Shinde M. Y.
	IV – Differential equation	Shri Dure A. A.
	V -Differential Calculus	Shri Shinde M. Y.
B. Sc .II	VI – Real Analysis.	Shri Talekar S. D.
	VII- Differential Equations	Shri Dure A. A.
	VIII - Abstract Algebra I	Shri Talekar S. D.
	IX – Algebra II	Shri Dure A. A.
	X- Complex Analysis	Shri Talekar S. D.
	XI – Integral Calculus.	Shri Shinde M. Y.
B. Sc	XII-Partial Differential Equations.	Shri Dure A. A.
.111	XIII-Metric Spaces	Shri Talekar S. D.
	XIV-Numerical Analysis	Shri Dure A. A.
	XV – Integral Transform.	Shri Dure A. A.
	XVI -Programming in C.	Shri Shinde M. Y.
B. ScIII	NTL- III (Practical)	Shri Shinde M. Y.
B. Sc.I	NTL- I (Practical)	Shri Shinde M. Y.
B. Sc .II	NTL- II (Practical)	Shri Shinde M. Y.

Parsi, L. C. S.

Department of Mathematics

Work-Load Distribution (2019-20)

Class	Paper No.	Name of the Teacher
	I – Algebra	Shri Khadatare A. B.
B. Sc .I	II - Calculus	Shri Shinde M. Y.
	III - Geometry	Shri Shinde M. Y.
	IV – Differential equation	Shri Khadatare A. B.
	V -Differential Calculus	Shri Khadatare A. B.
B. Sc .II	VI – Real Analysis.	Shri Surwase D. M.
	VII- Differential Equations	Shri Khadatare A. B.
	VIII - Abstract Algebra I	Shri Surwase D. M.
	IX – Algebra II	Shri Surwase D. M.
	X- Complex Analysis	Shri Khadatare A. B.
	XI – Integral Calculus.	Shri Shinde M. Y.
B. Sc	XII-Partial Differential Equations.	Shri Surwase D. M.
.III	XIII-Metric Spaces	Shri Surwase D. M
	XIV-Numerical Analysis	Shri Khadatare A. B.
	XV – Integral Transform.	Shri Surwase D. M.
	XVI -Programming in C.	Shri Shinde M. Y.
B. ScIII	NTL- III (Practical)	Shri Shinde M. Y.
B. Sc .I	NTL- I (Practical)	Shri Shinde M. Y.
B. Sc .II	NTL- II (Practical)	Shri Shinde M. Y.

Head of Maths Dept. Shri Shivaji Maha (d. sileya-Barsi, 41, 41)

Department of Mathematics

Work-Load Distribution (2020-21)

Class	Paper No.	Name of the Teacher
	I – Algebra	Shri Shinde M. Y.
B. Sc .I	II - Calculus	Shri Shinde M. Y.
	III - Geometry	Shri Shinde M. Y.
	IV – Differential equation	Shri Shinde M. Y.
	V -Differential Calculus	Shri Shinde M. Y.
B. Sc .II	VI – Real Analysis.	Shri Shinde M. Y.
	VII- Differential Equations	Shri Shinde M. Y.
	VIII - Abstract Algebra I	Shri Shinde M. Y.
	IX – Algebra II	Shri Shinde M. Y.
	X- Complex Analysis	Shri Shinde M. Y.
	XI – Integral Calculus.	Shri Shinde M. Y.
B. Sc	XII-Partial Differential Equations.	Shri Shinde M. Y.
.III	XIII-Metric Spaces	Shri Shinde M. Y.
	XIV-Numerical Analysis	Shri Shinde M. Y.
	XV – Integral Transform.	Shri Shinde M. Y.
	XVI -Programming in C.	Shri Shinde M. Y.
B. ScIII	NTL- III (Practical)	Shri Shinde M. Y.
B. Sc .I	NTL-I (Practical)	Shri Shinde M. Y.
B. Sc .II	NTL- II (Practical)	Shri Shinde M. Y.

Mad of Maths. Dept. Int Shivel Makavidyalays. Barsi, C.L. 11

Department of Mathematics

Work-Load Distribution (2021-22)

Class	Paper No.	Name of the Teacher
	I – Algebra	Miss Javir P.S.
B. Sc .I	II - Calculus	Shri Shinde M. Y.
	III - Geometry	Shri Shinde M. Y.
	IV – Differential equation	Miss Javir P.S.
	V -Differential Calculus	Shri Sabale N.V.
B. Sc .II	VI – Laplace Transform	Miss Javir P.S.
	VII- Differential Equations	Miss Javir P.S.
	VIII - Abstract Algebra I	Shri Sabale N.V.
	IX – Algebra II	Shri Shinde M. Y.
	X- Complex Analysis	Shri Sabale N.V.
	XI – Real Analysis	Shri Sabale N.V.
B. Sc	XII-Partial Differential Equations.	Miss Javir P.S.
.III	XIII-Metric Spaces	Shri Sabale N.V.
	XIV-Numerical Analysis	Shri Sabale N.V.
	XV – Graph Theory.	Miss Javir P.S.
	XVI -Integral Calculus.	Shri Shinde M. Y.
B. ScIII	NTL- III (Practical)	Shri Shinde M. Y.
B. Sc .I	NTL- I (Practical)	Shri Shinde M. Y.
B. Sc .II	NTL- II (Practical)	Shri Shinde M. Y.

Department of Mathematics

Work-Load Distribution (2022-23)

Class	Paper No.	Name of the Teacher
	I – Algebra	Shri. Sabale N.V.
B-Sc-I	II - Calculus	Shri. Shinde M. Y.
	III - Geometry	Shri Shinde M. Y.
	IV – Differential equation	Shri. Sathe R.R.
B-Sc-II	V -Differential Calculus	Shri. Shinde M. Y.
	VI – Laplace Transform	Shri. Sathe R.R.
	VII- Differential Equations	Shri. Sathe R.R.
	VIII -Abstract Algebra-I	Shri. Sabale N.V.
B.Sc-III	IX – Algebra II	Shri. Sathe R.R.
	X- Complex Analysis	Shri. Sabale N.V.
	XI – Real Analysis	Shri. Sabale N.V.
	XII-Partial Differential Equations.	Shri. Sathe R.R.
	XIII-Metric Spaces	Shri. Sathe R.R.
	XIV-Numerical Analysis	Shri. Sabale N.V.
	XV – Graph Theory	Shri. Sabale N.V.
	XVI -Integral Calculus	Shri. Shinde M. Y.
B.Sc-III	NTL- III (Practical)	Shri. Shinde M. Y.
B.Sc-I	NTL-I (Practical)	Shri. Shinde M. Y.
B.Sc-II	NTL- II (Practical)	Shri. Shinde M. Y.

Dept. of Mathematics S.S.M. Burshi